Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9475–9484 | Cite as

New semi-empirical computational analysis of catalytic reactions for automobile



Reaction profiles of diatomic molecules, \(\hbox {O}_2, \hbox {N}_2\), and NO, on a transition \(d\)-metal surface were semi-empirically calculated using a new approach based on a bond-energy bond-order (BEBO) model. The BEBO model could be a useful relation for describing reaction configurations. In this work, we introduce a new semi-empirical model which combines density functional theory (DFT)-based interaction parameters with the empirical Miyazaki BEBO model and demonstrate that our model could also be used successfully in previous DFT calculation results. The predictions calculated using this model, such as adsorption energies and adsorption geometries of incoming gas molecules, are close to previous experimental and theoretical results. In particular, the most remarkable point is that previous DFT calculation results and experimental results are available to our procedure. In other words, our model could be extremely simple but powerful.


Reaction analysis Semi-empirical computational analysis Exhaust gas catalyst 



The authors are grateful to Dr. Shin’ichi Matsumoto and Dr. Hirohito Hirata (Toyota Motor Corporation) for their excellent work.


  1. 1.
    H.S. Johnston, Gas phase reaction rate theory (Ronald, New York, 1966)Google Scholar
  2. 2.
    G.C. Bond, Discuss. Faraday Soc. 41, 200 (1966)CrossRefGoogle Scholar
  3. 3.
    W.H. Weinberg, H.A. Deans, R.P. Merrill, Surf. Sci. 41, 312 (1974)CrossRefGoogle Scholar
  4. 4.
    W.H. Weinberg, R.P. Merrill, J. Catal. 40, 268 (1975)CrossRefGoogle Scholar
  5. 5.
    W.H. Weinberg, J. Catal. 28, 459 (1973)CrossRefGoogle Scholar
  6. 6.
    W.H. Weinberg, R.P. Merrill, Surf. Sci. 39, 206 (1973)CrossRefGoogle Scholar
  7. 7.
    E. Miyazaki, J. Catal. 65, 84 (1980)CrossRefGoogle Scholar
  8. 8.
    E. Miyazaki, Surf. Sci. 71, 741 (1978)CrossRefGoogle Scholar
  9. 9.
    E. Miyazaki, I. Yasumori, Surf. Sci. 57, 755 (1976)CrossRefGoogle Scholar
  10. 10.
    P. Blowers, R.I. Masel, J. Phys. Chem. A 102, 9957 (1998)CrossRefGoogle Scholar
  11. 11.
    H. Sellers, E. Shustorovich, Surf. Sci. 356, 209 (1996)CrossRefGoogle Scholar
  12. 12.
    E. Shustorovich, H. Sellers, Surf. Sci. Rep. 31, 5 (1998)CrossRefGoogle Scholar
  13. 13.
    E. Shustorovich, A.V. Zeigarnik, Surf. Sci. 527, 137 (2003)CrossRefGoogle Scholar
  14. 14.
    J.E. Sutton, D.G. Vlachos, J. Catal. 297, 202 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  16. 16.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  18. 18.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)CrossRefGoogle Scholar
  20. 20.
    J.A. White, D.M. Bird, Phys. Rev. B 50, 4954 (1994)CrossRefGoogle Scholar
  21. 21.
    B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999)CrossRefGoogle Scholar
  22. 22.
    D.C. Ford, Y. Xu, M. Mavrikakis, Surf. Sci. 587, 159 (2005)CrossRefGoogle Scholar
  23. 23.
    J.A. Herron, S. Tonelli, M. Mavrikakis, Surf. Sci. 606, 1670 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Mavrikakis, J. Rempel, J. Greeley, L.B. Hansen, J.K. Nørskov, J. Chem. Phys. 117, 6737 (2002)CrossRefGoogle Scholar
  25. 25.
    G. BrodÉn, T.N. Rhodin, C. Brucker, R. Benbow, Z. Hurych, Surf. Sci. 59, 593 (1976)CrossRefGoogle Scholar
  26. 26.
    H. Niiyama, E. Echigoya, J. Catal. 38, 238 (1975)CrossRefGoogle Scholar
  27. 27.
    C.E. Wartnaby, A. Stuck, Y.Y. Yee, D.A. King, J. Phys. Chem. 100, 12483 (1996)CrossRefGoogle Scholar
  28. 28.
    R.D. Ramsier, Q. Gao, H.N. Waltenburg, K.-W. Lee, O.W. Nooij, L. Leeferts, J.T. Yates, Surf. Sci. 320, 209 (1994)CrossRefGoogle Scholar
  29. 29.
    H.J. Borg, J.F.C.-J.M. Reijerse, R.A. van Santen, J.W. Niemantsverdriet, J. Chem. Phys. 101, 10052 (1994)CrossRefGoogle Scholar
  30. 30.
    L. Pauling, J. Am. Chem. Soc. 69, 542 (1947)CrossRefGoogle Scholar
  31. 31.
    M.E. Kordesch, W. Stenzel, H. Conrad, Surf. Sci. 175, L687 (1986)CrossRefGoogle Scholar
  32. 32.
    D.T. Wickham, B.A. Banse, B.E. Koel, Surf. Sci. 243, 83 (1991)CrossRefGoogle Scholar
  33. 33.
    V.P. Zhdanov, B. Kasemo, Catal. Lett. 40, 197 (1996)CrossRefGoogle Scholar
  34. 34.
    D. Brennan, D.O. Hayward, B.M.W. Trapnell, Proc. R. Soc. Lond. Ser. A 256, 81 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yasuhiro Ikuta
    • 1
  • Yasutaka Nagai
    • 1
  • Naoki Takahashi
    • 1
  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan

Personalised recommendations