Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9715–9730 | Cite as

Recyclable Ag@AgBr-gelatin film with superior visible-light photocatalytic activity for organic degradation

  • Jing Zhu
  • Changjiang Li
  • Fei Teng
  • Baozhu Tian
  • Jinlong Zhang


Recyclable Ag@AgBr-gelatin film was fabricated by a versatile route, i.e., embedding Ag@AgBr grains into gelatin matrix, constructing 3D network structures via the cross-linking reaction between gelatin and cross-linking agent 1,3-bis(vinylsulfonyl) propanol, and forming Ag@AgBr-gelatin film on the nylon mesh. The microstructures and chemical compositions of the obtained films were analyzed by the means of scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermo gravimetry/differential thermal analyzer, and Fourier transform infrared spectroscopy. It was revealed that the 3D network structure was formed via the cross-linking reaction between gelatin and cross-linking agent 1,3-bis(vinylsulfonyl) propanol (BVP). Photocatalytic degradation of methyl orange indicated that Ag@AgBr-gelatin film exhibited excellent visible-light photocatalytic activity and recyclability, due to the reason that the 3D networks can efficiently fix Ag@AgBr but hardly hinder the transmissions of reactants and degradation products. The adhesion fastness of Ag@AgBr-gelatin film on nylon mesh enhances with increasing the dosage of cross-linking agent BVP, and the lower limit of BVP dosage for forming unbroken film is 0.02 g/m2. Excessive cross-linking would make gelatin network structure too denser, resulting in the decline of photocatalytic activity.


Ag@AgBr Gelatin film Recycle Surface plasmon resonance Photocatalytic activity 



This work has been supported by the National Natural Science Foundation of China (21277046, 21047002, 21173077), the Shanghai Committee of Science and Technology (13NM1401000), the Shanghai Natural Science Foundation (10ZR1407400), the National Basic Research Program of China (973 Program, 2010CB732306), and the Project of International Cooperation of the Ministry of Science and Technology of China (2011DFA50530). Open Project from Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control of Nanjing University of Information Science and Technology, Jiangsu Province Innovation Platform for Superiority Subject of Environmental Science and Engineering (KHK1211).

Supplementary material

11164_2015_1960_MOESM1_ESM.docx (264 kb)
Supplementary material 1 (DOCX 265 kb)


  1. 1.
    Q. Zhang, D.Q. Lima, I. Lee, F. Zaera, M.F. Chi, Y.D. Yin, A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. 50, 7088–7092 (2011)CrossRefGoogle Scholar
  2. 2.
    X.J. Shen, J.L. Zhang, B.Z. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile. J. Hazard. Mater. 192, 651–657 (2011)CrossRefGoogle Scholar
  3. 3.
    J.H. Mo, Y.P. Zhang, Q.J. Xu, J.J. Lamson, R.Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos. Environ. 43, 2229–2246 (2009)CrossRefGoogle Scholar
  4. 4.
    I. Tsuji, H. Kato, A. Kudo, Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid-solution photocatalyst. Angew. Chem. Int. Ed. 44, 3565–3568 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Akihiko, M. Yugo, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  7. 7.
    X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Fujishima, T.N. Rao, D.A. Truk, Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1–21 (2000)CrossRefGoogle Scholar
  9. 9.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRefGoogle Scholar
  10. 10.
    B.Z. Tian, C.Z. Li, J.L. Zhang, One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem. Eng. J. 191, 402–409 (2012)CrossRefGoogle Scholar
  11. 11.
    W.W. Zou, J.L. Zhang, F. Chen, Preparation, characterization and application of TiO2 nanoparticles surface-modified by DDAT. Mater. Lett. 64, 1710–1712 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Dong, Y. Shao, X. Zhang, H. Ma, X. Zhang, F. Shi, C. Ma, M. Xue, Synthesis and properties of magnetically separable Fe3O4/TiO2/Bi2O3 photocatalysts. Res. Chem. Intermed. 40, 2953–2961 (2014)CrossRefGoogle Scholar
  13. 13.
    B.Z. Tian, J.L. Zhang, T.Z. Tong, F. Chen, Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl. Catal. B 79, 394–401 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)CrossRefGoogle Scholar
  15. 15.
    J.P. Deng, J.H. Lin, C.Y. Hsu, Cysteine-assisted growth of silver on gold nanorods. Res. Chem. Intermed. 40, 2269–2276 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Wang, B.B. Huang, Y. Dai, M.H. Whangbo, Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 14, 9813–9825 (2012)CrossRefGoogle Scholar
  17. 17.
    P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 47, 7931–7933 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, H. Jin, Y. Dai, Z.Y. Wang, J. Wei, J. Zhan, S.Y. Wang, J.P. Wang, M.H. Whangbo, Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem. Eur. J. 15, 1821–1824 (2009)CrossRefGoogle Scholar
  19. 19.
    Q.S. Tao, F. Yang, P.Y. Wu, B.Z. Tian, J.L. Zhang, Study of the factors influencing the photo-stability of Ag@AgBr plasmonic photocatalyst. Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1812-5 Google Scholar
  20. 20.
    B.Z. Tian, J.L. Zhang, Morphology-controlled synthesis and applications of silver halide photocatalytic materials. Catal. Surv. Asia 16, 210–230 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Alijani, A. Zarringhalam Moghaddam, M. Vaez, J. Towfighi, Synthesis of N–TiO2–P25 coated on ceramic foam by modified sol–gel method for Acid Red 73 degradation under visible-light irradiation. Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1546-4 Google Scholar
  22. 22.
    H.R. Pant, B. Pant, P. Pokharel, H.J. Kim, L.D. Tijing, C.H. Park, D.S. Lee, H.Y. Kim, C.S. Kim, Photocatalytic TiO2–GO/nylon-6 spider-wave-like nano-nets via electrospinning and hydrothermal treatment. J. Membr. Sci. 429, 225–234 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Li, C.M. Fan, X.C. Zhang, Y.W. Wang, Y.F. Wang, H. Zhang, Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications. Thin Solid Films 562, 506–512 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Guo, N. Chen, C.P. Feng, Y.N. Yang, B.G. Zhang, G. Wang, Z.Y. Zhang, Performance of magnetically recoverable core–shell Fe3O4@Ag3PO4/AgCl for photocatalytic removal of methylene blue under simulated solar light. Catal. Commun. 38, 26–30 (2013)CrossRefGoogle Scholar
  25. 25.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Resour. 44, 2997–3027 (2010)Google Scholar
  26. 26.
    S. Mozia, A. Morawski, M. Toyoda, M. Inagaki, Effectiveness of photodecomposition of an azo dye on a novel anatase-phase TiO2 and two commercial photocatalysts in a photocatalytic film reactor (PMR). Sep. Purif. Technol. 63, 386–391 (2008)CrossRefGoogle Scholar
  27. 27.
    D.J. Wang, Z.H. Li, L.W. Shang, J.W. Liu, J. Shen, Heterostructured Ag3PO4/TiO2 film with high efficiency for degradation of methyl orange under visible light. Thin Solid Films 551, 8–12 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Mendret, M. Hatat-Fraile, M. Rivallin, S. Brosillon, Hydrophilic composite films for simultaneous separation and photocatalytic degradation of organic pollutants. Sep. Purif. Technol. 111, 9–19 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Yang, J.S. Gu, H.Y. Yu, J. Zhou, S.F. Li, X.M. Wu, L. Wang, Polypropylene film surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic film reactor. Sep. Purif. Technol. 83, 157–165 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Mozia, Photocatalytic film reactors (PMRs) in water and wastewater treatment. Sep. Purif. Technol. 73, 71–91 (2010)CrossRefGoogle Scholar
  31. 31.
    Q.Y. Li, Y.Y. Xing, R. Li, L.L. Zong, X.D. Wang, J.J. Yang, AgBr modified TiO2 nanotube films: highly efficient photo-degradation of methyl orange under visible light irradiation. RSC Adv. 2, 9781–9785 (2012)CrossRefGoogle Scholar
  32. 32.
    L.F. Qi, J.G. Yu, G. Liu, P.K. Wong, Synthesis and photocatalytic activity of plasmonic Ag@AgCl composite immobilized on titanate nanowire films. Catal. Today 224, 193–199 (2014)CrossRefGoogle Scholar
  33. 33.
    P.W. Huo, Y.S. Yan, S.T. Li, H.M. Li, W.H. Huang, Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity. Desalination 256, 196–200 (2010)CrossRefGoogle Scholar
  34. 34.
    R.F. Dong, B.Z. Tian, J.L. Zhang, T.T. Wang, Q.S. Tao, S.Y. Bao, F. Yang, C.Z. Zeng, AgBr@Ag/TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability. Catal. Commun. 38, 16–20 (2013)CrossRefGoogle Scholar
  35. 35.
    P. Wang, B.B. Huang, Z.Z. Lou, X.Y. Zhang, X.Y. Qin, Y. Dai, G.K. Zheng, X.N. Wang, Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem. Eur. J. 16, 538–544 (2010)CrossRefGoogle Scholar
  36. 36.
    M.S. Zhu, P.L. Chen, M.H. Liu, Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. J. Mater. Chem. 21, 16413–16419 (2011)CrossRefGoogle Scholar
  37. 37.
    V. Koul, R. Mohamed, D. Kuckling, H.J.P. Adler, V. Choudhary, Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf. B 83, 204–213 (2011)CrossRefGoogle Scholar
  38. 38.
    P. Guerrero, T. Garrido, I. Leceta, K. de la Caba, Films based on proteins and polysaccharides: preparation and physical–chemical characterization. Eur. Polym. J. 49, 3713–3721 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Azioune, F. Siroti, J. Tanguy, M. Jouini, M.M. Chehimia, B. Miksa, Interactions and conformational changes of human serum albumin at the surface of electrochemically synthesized thin polypyrrole films. Electrochim. Acta 50, 1661–1667 (2005)CrossRefGoogle Scholar
  40. 40.
    Y.A. Arfat, S. Benjakul, T. Prodpran, K. Osako, Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocoll. 39, 58–67 (2014)CrossRefGoogle Scholar
  41. 41.
    S.H. Teng, J.J. Shi, L.J. Chen, Formation of calcium phosphates in gelatin with a novel diffusion system. Colloids Surf. B 49, 87–92 (2006)CrossRefGoogle Scholar
  42. 42.
    C.H. Yao, B.S. Liu, C.J. Chang, S.H. Hs, Y.S. Chen, Preparation of networks of gelatin and genipin as degradable biomaterials. Mater. Chem. Phys. 83, 204–208 (2004)CrossRefGoogle Scholar
  43. 43.
    M. Changez, V. Koul, B. Krishna, A.K. Dinda, V. Choudhary, Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: in vitro and in vivo. Biomaterials 25, 139–146 (2004)CrossRefGoogle Scholar
  44. 44.
    D. Hellio-Serughetti, M. Djabourov, Gelatin hydrogels cross-linked with bis(vinylsulfonyl)methane (BVSM): 1. The chemical networks. Langmuir 22, 8509–8515 (2006)CrossRefGoogle Scholar
  45. 45.
    X.F. Zhou, C. Hu, X.X. Hu, T.W. Peng, J.H. Qu, Plasmon-assisted degradation of toxic pollutants with Ag–AgBr/Al2O3 under visible-light irradiation. J. Phys. Chem. C 114, 2746–2750 (2010)CrossRefGoogle Scholar
  46. 46.
    C. Hu, T.W. Peng, X.X. Hu, Y.L. Nie, X.F. Zhou, J.H. Qu, H. He, Plasmon-induced photodegradation of toxic pollutants with Ag–AgI/Al2O3 under visible-light irradiation. J. Am. Chem. Soc. 132, 857–862 (2010)CrossRefGoogle Scholar
  47. 47.
    L. Kuai, B.Y. Geng, X.T. Chen, Y.Y. Zhao, Y.C. Luo, Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag–AgBr plasmonic photocatalyst. Langmuir 26, 18723–18727 (2010)CrossRefGoogle Scholar
  48. 48.
    R.F. Dong, B.Z. Tian, C.Y. Zeng, T.Y. Li, T.T. Wang, J.L. Zhang, Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. J. Phys. Chem. C 117, 213–220 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Key Lab for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Department of ChemistryHuangshan UniversityHuangshanPeople’s Republic of China
  3. 3.Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and EngineeringNanjing University of Information Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations