Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 11, pp 8975–9001 | Cite as

Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts

  • Javad Farzanfar
  • Ali Reza Rezvani
Article

Abstract

The effect of the preparation method on the structural properties and activity of Ni–Co catalysts in the Fischer–Tropsch synthesis has been explored. Impregnation, co-precipitation and a novel method, thermal decompositions of inorganic precursor complex, procedures were applied for the generation of the Ni-promoted alumina- or silica-supported cobalt catalysts. The precursors and the catalysts that were obtained from their calcination were characterized by powder X-ray diffraction, thermal gravimetric analysis, Brunauer–Emmett–Teller specific surface area measurements, scanning electron microscopy and Fourier transform infrared spectroscopy. The catalytic performance in Fischer–Tropsch synthesis was investigated for all calcined catalysts in the temperature interval from 280 to 360 °C. The Ni–Co/Al2O3 catalyst prepared by thermal decomposition of [Ni(H2O)6][Co(dipic)2]·2H2O/Al2O3 as a precursor performed optimally for the conversion of synthesis gas to light olefins. The outcomes revealed that this novel procedure is more advantageous than impregnation and co-precipitation methods for the preparation of effective and durable cobalt catalysts for Fischer–Tropsch synthesis.

Keywords

Fischer–Tropsch synthesis Preparation method Novel precursor Bimetallic nanocatalyst 

Notes

Acknowledgment

The authors are grateful to the University of Sistan and Baluchestan (USB) for financial support.

References

  1. 1.
    G. Prieto, P. Concepcion, R. Murciano, A. Martinez, J. Catal. 302, 37 (2013)CrossRefGoogle Scholar
  2. 2.
    A.A. Mirzaei, S. Shahriari, M. Arsalanfar, J. Nat. Gas. Sci. Eng. 3, 537 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Fazlollahi, M. Sarkari, A. Zare, A.A. Mirzaei, H. Atashi, J. Ind. Eng. Chem. 18, 1223 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Zare, A. Zare, M. Shiva, A.A. Mirzaei, J. Ind. Eng. Chem. 19, 1858 (2013)CrossRefGoogle Scholar
  5. 5.
    A.A. Mirzaei, B. Shirzadi, H. Atashi, M. Mansouri, J. Ind. Eng. Chem. 18, 1515 (2012)CrossRefGoogle Scholar
  6. 6.
    S.J. Park, J.W. Bae, G.I. Jung, K.S. Ha, K.W. Jun, Y.J. Lee, H.G. Park, Appl. Catal. A 413–414, 310 (2012)CrossRefGoogle Scholar
  7. 7.
    J.Y. Park, Y.J. Lee, P.R. Karandikar, K.W. Jun, K.S. Ha, H.G. Park, Appl. Catal. A 411–412, 15 (2012)CrossRefGoogle Scholar
  8. 8.
    D.I. Enache, B. Rebours, M.R. Auberger, R. Revel, J. Catal. 205, 346 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, J. Chen, J. Ren, Y. Sun, Appl. Catal. A 243, 121 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Sun, N. Tsubaki, K. Fujimoto, Appl. Catal. A 202, 121 (2000)CrossRefGoogle Scholar
  11. 11.
    K. Jalama, N.J. Coville, H. Xiong, D. Hildebrandt, D. Glasser, S. Taylor, A. Carley, J.A. Anderson, G.J. Hutchings, Appl. Catal. A 395, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Storsæter, B. Tøtdal, J.C. Walmsley, B.S. Tanem, A. Holmen, J. Catal. 236, 139 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, Y. Liu, G. Yang, S. Sun, N. Tsubaki, Appl. Catal. A 321, 79 (2007)CrossRefGoogle Scholar
  14. 14.
    V.A.D.L.P. O’Shea, M.C. Álvarez-Galván, J.M. Campos-Martín, J.L.G. Fierro, Appl. Catal. A 326, 65 (2007)Google Scholar
  15. 15.
    A.A. Khassin, T.M. Yurieva, G.N. Kustova, I.S. Itenberg, M.P. Demeshkina, T.A. Krieger, L.M. Plyasova, G.K. Chermashentseva, V.N. Parmon, J. Mol. Catal. A: Chem. 168, 193 (2001)CrossRefGoogle Scholar
  16. 16.
    B. Ernst, S. Libs, P. Chaumette, A. Kiennemann, Appl. Catal. A 186, 145 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Feyzi, A.A. Mirzaei, J. Fuel Chem. Technol. 40, 1435 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Lögdberg, M. Lualdi, S. Järås, J.C. Walmsley, E.A. Blekkan, E. Rytter, A. Holmen, J. Catal. 274, 84 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Farzanfar, A.R. Rezvani, C. R. Chimie. (2014). doi: 10.1016/j.crci.2014.05.007 Google Scholar
  20. 20.
    A. Miroliaee, A.R. Salehirad, A.R. Rezvani, Mater. Chem. Phys. 151, 312 (2015)CrossRefGoogle Scholar
  21. 21.
    M.V. Kirillova, M.F.C.G. DaSilva, A.M. Kirillov, J.J.R.F. DaSilva, A.J.L. Pombeiro, Inorg. Chim. Acta 360, 506 (2007)CrossRefGoogle Scholar
  22. 22.
    M.V. Kirillova, A.M. Kirillov, M.F.C.G. DaSilva, M.N. Kopylovich, J.J.R.F. DaSilva, A.J.L. Pombeiro, Inorg. Chim. Acta 361, 1728 (2008)CrossRefGoogle Scholar
  23. 23.
    A.R. Parent, S. Vedachalam, ChP Landee, M.M. Turnbull, J. Coord. Chem. 61, 93 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Aghabozorg, M. Ghadermazi, B. Nakhjavan, F. Manteghi, J. Chem. Crystallogr. 38, 135 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Moghimi, M. Ranjbar, H. Aghabozorg, F. Jalali, M. Shamsipur, K.K. Chadha, Can. J. Chem. 80, 1687 (2002)CrossRefGoogle Scholar
  26. 26.
    Sh Sheshmani, H. Aghabozorg, F. Mohammad, R. Panah, G. Alizadeh, B. Kickelbick, A. Nakhjavan, F. Moghimi, H.R. Ramezanipour, Z. Aghabozorg, Anorg. Allg. Chem. 632, 469 (2006)CrossRefGoogle Scholar
  27. 27.
    H. Aghabozorg, J.A. Gharamaleki, Sh Daneshvar, M. Ghadermazi, H.R. Khavasi, Acta Cryst. E64, m187 (2008)Google Scholar
  28. 28.
    A.C. Gonzalez-Baro, R. Pis-Diez, O.E. Piro, B.S. Parajon-Costa, Polyhedron 27, 502 (2008)CrossRefGoogle Scholar
  29. 29.
    C. Yenikaya, M. Poyraz, M. Sari, F. Demirci, H. Ilkimen, O. Buyukgungor, Polyhedron 28, 3526 (2009)CrossRefGoogle Scholar
  30. 30.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. (Wiley-Interscience, New York, 1997)Google Scholar
  31. 31.
    Z. Vargova, V. Zeleoak, I. Cisaova, K. Gyoryova, Thermochim. Acta 423, 149 (2004)CrossRefGoogle Scholar
  32. 32.
    L. Mao, Y. Wang, Y. Qi, M. Cao, C. Hu, J. Mol. Struct. 688, 197 (2004)CrossRefGoogle Scholar
  33. 33.
    I. Uçar, B. Karabulut, A. Bulut, Büyükgüngoro. J. Mol. Struct. 834–836, 336 (2007)CrossRefGoogle Scholar
  34. 34.
    M. Devereux, M. McCann, V. Leon, V. McKee, R.J. Ball, Polyhedron 21, 1063 (2002)CrossRefGoogle Scholar
  35. 35.
    W.B. White, V.G. Keramidas, Spectrochim. Acta 28, 501 (1972)CrossRefGoogle Scholar
  36. 36.
    D.L. Wood, E.M. Rabinovich, J. Non-Cryst, Solids 107, 199 (1989)Google Scholar
  37. 37.
    M. Yamame, Sol-Gel Technology for Thin Films (Noyes Publications, New Jersey, 1989)Google Scholar
  38. 38.
    G. Cordoba, R. Arroyo, J.L.G. Fierro, M.J. Viniegra, J. Solid State Chem. 123, 93 (1996)CrossRefGoogle Scholar
  39. 39.
    T.C. Sheng, S. Lang, B.A. Morrow, I.D. Gay, J. Catal. 148, 341 (1994)CrossRefGoogle Scholar
  40. 40.
    E.M. Fixman, M.C. Abello, O.F. Gorriz, L.A. Arrúa, Appl. Catal. A 319, 111 (2007)CrossRefGoogle Scholar
  41. 41.
    R.M. Almeida, T.A. Guiton, C.G. Pantano, J. Non-Cryst, Solids 121, 193 (1990)Google Scholar
  42. 42.
    N.K. Renuka, A.V. Shijina, A.K. Praveen, Mater. Lett. 82, 42 (2012)CrossRefGoogle Scholar
  43. 43.
    M.G. Ma, J.F. Zhu, Mater. Lett. 63, 881 (2009)CrossRefGoogle Scholar
  44. 44.
    N.P. Damayanti, J. Sol-Gel. Sci. Technol. 56, 47 (2010)CrossRefGoogle Scholar
  45. 45.
    C. He, N. Zhao, C. Shi, X. Du, J. Li, Mater. Lett. 61, 4940 (2007)CrossRefGoogle Scholar
  46. 46.
    P. Li, J. Liu, N. Nag, P.A. Crozier, J. Catal. 262, 73 (2009)CrossRefGoogle Scholar
  47. 47.
    A.K. Dalai, B.H. Davis, Appl. Catal. A 348, 1 (2008)CrossRefGoogle Scholar
  48. 48.
    L. Tian, C.F. Huo, D.B. Cao, Y. Yang, J. Xu, B.S. Wu, H.W. Xiang, Y.Y. Xu, Y.W. Li, J. Mol. Struct. Theochem 941, 30 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations