Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 11, pp 8363–8379 | Cite as

Removal of phenol in aqueous solution by adsorption onto green synthesized coinage nanoparticles beads

  • Jolly Pal
  • Manas Kanti Deb
  • Dhananjay Kumar Deshmukh
Article

Abstract

The adsorption of phenol from aqueous solution was carried out by using alginate-stabilized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) beads as adsorbents. The resulting AgNPs and AuNPs were characterized by scanning electron microscope, UV–visible spectroscopy and Fourier transform infrared spectroscopy. Batch adsorption studies have shown that removal is dependent upon process parameters like initial concentration, contact time, pH and adsorbent dosage. The adsorption data obtained from batch studies at optimized conditions have been subjected to Freundlich and Langmuir isotherm studies. The pseudo-first-order and pseudo-second-order kinetic models were also applied to the experimental data. Phenol was effectively (90.0 ± 0.8 %) removed from the aqueous solution using alginate-stabilized AuNPs beads as the adsorption process. Desorption studies were made to elucidate recovery of the adsorbate and adsorbent for the economic competitiveness of the removal system. The alginate-stabilized AgNPs and AuNPs beads were found to be good adsorbents for adsorption of phenol from the aqueous solution.

Keywords

Silver nanoparticles Gold nanoparticles Adsorption Alginate Phenol 

References

  1. 1.
    R. Jain, S. Sikarwar, J. Hazard. Mater. 152, 942 (2008)CrossRefGoogle Scholar
  2. 2.
    J.W. Patterson, Wastewater Treatment Technology (Ann Arbor Science, MI, 1975)Google Scholar
  3. 3.
    A.T.M. Din, B.H. Hameed, A.L. Ahmad, J. Hazard. Mater. 161, 1522 (2009)Google Scholar
  4. 4.
    S.P. Schottler, S.J. Eisenreich, P.D. Capel, Environ. Sci. Technol. 28, 1867 (1994)CrossRefGoogle Scholar
  5. 5.
    H. Jezequel, K.H. Chu, J. Environ. Sci. Health., Part A 41, 1519 (2006)CrossRefGoogle Scholar
  6. 6.
    S.N. Mukherjee, S. Kumar, A.K. Misra, F. Maohong, Chem. Eng. J. 129, 133 (2007)CrossRefGoogle Scholar
  7. 7.
    V. Meshko, L. Markovska, M. Minchev, A.E. Rodrigues, Water Res. 35, 3357 (2001)CrossRefGoogle Scholar
  8. 8.
    T.K. Chaithanya, S. Yedla, Environ. Technol. 31, 1495 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Kadirvelu, C. Namasivayam, Environ. Technol. 21, 1091 (2000)CrossRefGoogle Scholar
  10. 10.
    C. Quintelas, V.B. Silva, B. Silva, H. Figueiredo, T. Tavares, Environ. Technol. 32, 1541 (2011)CrossRefGoogle Scholar
  11. 11.
    F.C. Wu, R.L. Tseng, R.S. Juang, Environ. Technol. 22, 205 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Xing, L. Zhang, B. Li, X. Sun, J. Yu, Sep. Sci. Technol. 46, 2298 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Bajpai, R. Shrivastava, A.K. Bajpai, Colloids Surf. 236, 81 (2004)CrossRefGoogle Scholar
  14. 14.
    K.G. Bhattacharyya, A. Sarma, Dyes Pigm. 57, 211 (2003)CrossRefGoogle Scholar
  15. 15.
    M.F. Hou, C.X. Ma, W.D. Zhang, X.Y. Tang, Y.N. Fan, H.F. Wan, J. Hazard. Mater. 186, 1118 (2011)CrossRefGoogle Scholar
  16. 16.
    R.L. Ramos, M.S.B. Mendoza, J.S. Rabago, R.M.G. Coronado, J.M. Barron, Adsorption 17, 515 (2011)CrossRefGoogle Scholar
  17. 17.
    X.J. Xiong, X.J. Meng, T.L. Zheng, J. Hazard. Mater. 175, 241 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Pal, M.K. Deb, J. Exp. Nanosci. 9, 432 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Pal, M.K. Deb, J. Indian Chem. Soc. 89, 1689 (2012)Google Scholar
  20. 20.
    J. Pal, M.K. Deb, J. Dispers. Sci. Technol. 34, 1193 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Pal, M.K. Deb, D.K. Deshmukh, D. Verma, Appl. Water Sci. 3, 367 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Pal, M.K. Deb, Appl. Nanosci. (2013). doi: 10.1007/s13204-013-0277-y Google Scholar
  23. 23.
    J. Pal, M.K. Deb, J. Sircar, P.K. Agnihotri, Appl. Water Sci. (2014). doi: 10.1007/s13201-014-0179-5 Google Scholar
  24. 24.
    A. Ousslim, K. Bekkouch, A. Chetouani, E. Abbaoui, B. Hammouti, A. Aouniti, A. Elidrissi, F. Bentiss, Res. Chem. Intermed. 40, 1201 (2014)Google Scholar
  25. 25.
    A. Tiwari, T. Dewangan, A.K. Bajpai, J. Chin. Chem. Soc. 55, 952 (2008)CrossRefGoogle Scholar
  26. 26.
    J.P. Chen, M. Lin, Water Res. 35, 2385 (2001)CrossRefGoogle Scholar
  27. 27.
    R.L. Tseng, F.C. Wu, R.S. Juang, Carbon 41, 487 (2003)CrossRefGoogle Scholar
  28. 28.
    S. Babel, T.A. Kurniawan, J. Hazard. Mater. 97, 219 (2003)CrossRefGoogle Scholar
  29. 29.
    H.L. Chiang, J.H. Tsai, G.H. Chang, F.T. Jeng, Chemosphere 41, 1227 (2000)CrossRefGoogle Scholar
  30. 30.
    S.L. Hill, S.Y. Yong, C.L. Wong, J. Appl. Phycol. 21, 625 (2009)CrossRefGoogle Scholar
  31. 31.
    Z.Y. Xu, Q.X. Zhang, H.H.P. Fang, Environ. Sci. Technol. 33, 363 (2003)CrossRefGoogle Scholar
  32. 32.
    V.V. Azanova, J. Hradil, J. Reac, Func. Poly. 41, 163 (1999)CrossRefGoogle Scholar
  33. 33.
    S. Saha, A. Pal, S. Pande, S. Sarkar, S. Panigrahi, T. Pal, J. Phys. Chem. C 113(18), 7553 (2009)CrossRefGoogle Scholar
  34. 34.
    E. Torres, Y.N. Mata, M.L. Blazquez, J.A. Munoz, F. Gonzalez, A. Ballester, Langmuir 21, 7951 (2005)CrossRefGoogle Scholar
  35. 35.
    G. Li, Y. Du, Y. Tao, H. Deng, X. Luo, J. Yang, Carbohydr. Polym. 82, 706 (2010)CrossRefGoogle Scholar
  36. 36.
    N. Kannan, K. Karrupasamy, Indian J. Environ. Prot. 18, 683 (1998)Google Scholar
  37. 37.
    I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Chemosphere 61, 492 (2005)CrossRefGoogle Scholar
  38. 38.
    N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, J. Colloid Interface Sci. 362, 457 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Lagergren, Handlinger 24, 1 (1898)Google Scholar
  40. 40.
    Y. Wang, Y. Mu, Q.B. Zhao, H.Q. Yu, Sep. Purif. Technol. 50, 1 (2006)CrossRefGoogle Scholar
  41. 41.
    O.S. Stamenkovic, M.L. Lazic, Z.B. Todorovic, V.B. Veljkovic, D.U. Skala, Bioresour. Technol. 98, 2688 (2007)CrossRefGoogle Scholar
  42. 42.
    V. Singh, S.K. Singh, S. Maurya, Chem. Eng. J. 160, 129 (2010)CrossRefGoogle Scholar
  43. 43.
    A. Eftekhari, H. Yangjeh, S. Sohrabnezhad, J. Hazard. Mater. 178, 349 (2010)CrossRefGoogle Scholar
  44. 44.
    M. Dogan, Y. Ozdemir, M. Alkan, Dyes Pigm. 75, 701 (2007)CrossRefGoogle Scholar
  45. 45.
    A. Pal, S. Shah, S. Devi, Mater. Chem. Phys. 114, 530 (2009)Google Scholar
  46. 46.
    J. Pal, M.K. Deb, Indian J. Environ. Prot. 32, 574 (2012)Google Scholar
  47. 47.
    J. Pal, M.K. Deb, Indian J. Chem. Sec. A 51, 821 (2012)Google Scholar
  48. 48.
    J. Pal, M.K. Deb, D.K. Deshmukh, Appl. Nanosci. 4, 507 (2014)CrossRefGoogle Scholar
  49. 49.
    J. Pal, M.K. Deb, D.K. Deshmukh, B.K. Sen, Appl. Nanosci. 4, 61 (2014)CrossRefGoogle Scholar
  50. 50.
    J. Pal, M.K. Deb, J. Indian Chem. Soc. 90, 2115 (2013)Google Scholar
  51. 51.
    B. Shah, R. Tailor, A. Shah, J. Dispersion Sci. Technol. 33, 41 (2012)CrossRefGoogle Scholar
  52. 52.
    S. Shah, A. Pal, R. Gude, S. Devi, Eur. Polym. J. 46, 958 (2010)CrossRefGoogle Scholar
  53. 53.
    M. Nafees, S. Ali, S. Idrees, K. Rashid, M. Shafique, Appl. Nanosci. (2012). doi: 10.1007/s13204-012-0113-9 Google Scholar
  54. 54.
    S. Babel, M.E. Opiso, Inter. J. Environ. Sci. Technol. 4, 99 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Studies in ChemistryPandit Ravishankar Shukla UniversityRaipurIndia
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan

Personalised recommendations