Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 11, pp 8111–8146 | Cite as

Synthetic journey towards transition metal-free arylations

  • Selvaraj Mohana Roopan
  • Jeyakannu Palaniraja
Article

Abstract

In general, aryl–aryl transformations were investigated via transition metal-catalysed reactions. However, transition metal-mediated organic synthesis provided higher yields but has some flaws such as high cost, and the need for careful exclusion of air and moisture during the reactions. Possibly, there may be contamination of the product from traces of heavy metals present. To overcome these kinds of disadvantages, continuous efforts have been focused on the recent development of aryl–aryl formation through transition metal-free (TMF) reactions. However, most of these cross-couplings reaction were limited to hetero and electron-rich arenes which require strong inorganic bases. Our critical review includes a synthetic pathway to prepared X-aryl (X = C, N, O and S) motif by a transition metal-free scenario. Formerly, TMF reactions were carried out by various sources like strong bases, diazodium salt, aryliodonium salt, organo-catalysts and versatile energy sources like microwave heating, visible light and photochemical reactor. In this review, we have focused on the transition metal-free arylations.

Keywords

Transition metal catalyst Arylation Arenes Cross-coupling reaction Organo-catalyst 

Notes

Acknowledgments

Author S.M. Roopan thanks DST-SERB for providing research funds under the FTYS scheme (No. SB/FT/CS-126/2012). Another author, Palaniraja, thanks DST-SERB, India, for providing project assistantship. The authors are grateful to the management of VIT University for their support and encouragement, and we thank to the VIT-SIF for providing excellent instrument facilities. Furthermore, the authors thank their co-workers named in the references for their experimental and intellectual contributions.

References

  1. 1.
    G.P. McGlacken, L.M. Bateman, Chem. Soc. Rev. 38, 2447–2464 (2009)CrossRefGoogle Scholar
  2. 2.
    I. Kondolff, H. Doucet, M. Santelli, Organometallics 25, 5219–5222 (2006)CrossRefGoogle Scholar
  3. 3.
    V.P. Mehta, B. Punji, RSC. Adv. 3, 11957–11986 (2013)CrossRefGoogle Scholar
  4. 4.
    J.H. Kirchhoff, M.R. Netherton, I.D. Hill, G.C. Fu, J. Am. Chem. Soc. 124, 13662–13663 (2002)CrossRefGoogle Scholar
  5. 5.
    Q. Wu, L. Wang, Synthesis 13, 2007–2012 (2008)Google Scholar
  6. 6.
    B.P. Fors, S.L. Buchwald, J. Am. Chem. Soc. 132, 15914–15917 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Li, L. Wang, H. Li, Tetrahedron 61, 8633–8640 (2005)CrossRefGoogle Scholar
  8. 8.
    N. Yoshikai, H. Matsuda, E. Nakamura, J. Am. Chem. Soc. 131, 9590–9599 (2009)CrossRefGoogle Scholar
  9. 9.
    S.P. Mee, V. Lee, J.E. Baldwin, Angew. Chem. Int. Ed. 43, 1132–1136 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Sase, M. Jaric, A. Metzger, V. Malakhov, P. Knochel, J. Org. Chem. 73, 7380–7382 (2008)CrossRefGoogle Scholar
  11. 11.
    J.Y. Lee, G.C. Fu, J. Am. Chem. Soc. 125, 5616–5617 (2003)CrossRefGoogle Scholar
  12. 12.
    O. Baudoin, Chem. Soc. Rev. 40, 4902–4911 (2011)CrossRefGoogle Scholar
  13. 13.
    Q.L. Xu, H. Gao, M. Yousufuddin, D.H. Ess, L. Kurti, Aerob. J. Am. Chem. Soc. 135, 14048–14051 (2013)CrossRefGoogle Scholar
  14. 14.
    B. Pruger, G.E. Hofmeister, C.B. Jacobsen, D.G. Alberg, M. Nielsen, K.A. Jorgensen, Chem. Eur. J. 16, 3783–3790 (2010)CrossRefGoogle Scholar
  15. 15.
    W. Liu, F.T.X. Wang, H. Yu, Y. Bi, Chem. Commun. 49, 2983–2985 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Liu, J. Hu, X.C. Wang, M.J. Zhong, Y. Li, S.D. Yang, Y.M. Liang, Tetrahedron 68, 5391–5395 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Gao, D.H. Ess, M. Yousufuddin, Y. Kurthi, J. Am. Chem. Soc. 135, 7086–7089 (2013)CrossRefGoogle Scholar
  18. 18.
    F.F. Zhuo, W.W. Xie, Y.X. Yang, L. Zhang, P. Wang, R. Yuan, C.S. Da, J. Org. Chem. 78, 3243–3249 (2013)CrossRefGoogle Scholar
  19. 19.
    Q. Chen, X.M. Jourdin, P. Knochel, J. Am. Chem. Soc. 135, 4958–4961 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Pirali, F. Zhang, A.H. Miller, J.L. Head, D. McAusland, M.F. Greaney, Angew. Chem. Int. Ed. 51, 1006–1009 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Truong, O. Daugulis, Org. Lett. 14, 5964–5967 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Mohanan, Y. Coquerel, J. Rodriguez, Org. Lett. 14, 4686–4689 (2012)CrossRefGoogle Scholar
  23. 23.
    R.A. Dhokale, P.R. Thakare, S.B. Mhaske, Org. Lett. 14, 3994–3997 (2012)CrossRefGoogle Scholar
  24. 24.
    P. Kwan, M.J. Brodie, Epilepsia. 45, 1141–1149 (2004)CrossRefGoogle Scholar
  25. 25.
    W. Liu, H. Cao, H. Zhang, K.H. Chung, C. He, H. Wang, F.Y. Kwong, A. Lei, J. Am. Chem. Soc. 132, 16737–16740 (2010)CrossRefGoogle Scholar
  26. 26.
    W.C. Chen, Y.C. Hsu, W.C. Shih, C.Y. Lee, W.H. Chuang, Y.F. Tsai, P.P.Y. Chen, T.G. Ong, Chem. Commun. 48, 6702–6704 (2012)CrossRefGoogle Scholar
  27. 27.
    T.D. Bradshaw, A.D. Westwell, Curr. Med. Chem. 11, 1009–1021 (2004)CrossRefGoogle Scholar
  28. 28.
    Y. Gao, Q. Song, G. Cheng, X. Cui, Org. Biomol. Chem. 12, 1044–1047 (2014)CrossRefGoogle Scholar
  29. 29.
    C. Marti, E.M. Carreira, Eur. J. Org. Chem. 12, 2209–2219 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Lin, S.J. Danishefsky, Angew. Chem. Int. Ed. 42, 36–51 (2003)CrossRefGoogle Scholar
  31. 31.
    A.H. Beckett, R.W. Daisley, J. Walker, Tetrahedron 24, 6093–6109 (1968)CrossRefGoogle Scholar
  32. 32.
    C. Crestini, R.A. Saladino, Synth. Commun. 24, 2835 (1994)CrossRefGoogle Scholar
  33. 33.
    E.J. Hennessy, S.L. Buchwald, J. Am. Chem. Soc. 125, 12084–12085 (2003)CrossRefGoogle Scholar
  34. 34.
    Z.Z. Zhao, H.L. Hua, J.Y. Luo, Z.S. Chen, P.X. Zhou, X.Y. Liu, Y.M. Liang, Tetrahedron 69, 10030–10035 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Rueping, M. Leiendecker, A. Das, T. Poisson, Chem. Commun. 47, 10629–10631 (2011)CrossRefGoogle Scholar
  36. 36.
    H. Zhao, J. Shen, J. Guo, R. Ye, H. Zeng, Chem. Commun. 49, 2323–2325 (2013)CrossRefGoogle Scholar
  37. 37.
    C.L. Sun, H. Li, D.G. Yu, M. Yu, X. Zhou, X.Y. Lu, K. Huang, S.F. Zheng, B.J. Li, Z.J. Shi, Nat. Chem. 2, 1044–1049 (2010)CrossRefGoogle Scholar
  38. 38.
    E. Shirakawa, K.I. Itoh, T. Higashino, T. Hayashi, J. Am. Chem. Soc. 132, 15537–15539 (2010)CrossRefGoogle Scholar
  39. 39.
    Y.S. Ng, C.S. Chan, K.S. Chan, Tetrahedron Lett. 53, 3911–3914 (2012)CrossRefGoogle Scholar
  40. 40.
    X. Song, A. Song, F. Zhang, H.X. Li, W. Wang, Nat. Commun. 2, 524 (2011)CrossRefGoogle Scholar
  41. 41.
    R.I. McDonald, G. Liu, S.S. Stahl, Chem. Rev. 111, 2981–3019 (2011)CrossRefGoogle Scholar
  42. 42.
    Y. Li, D. Song, M. Dong, J. Am. Chem. Soc. 130, 2962–2964 (2008)CrossRefGoogle Scholar
  43. 43.
    R. Zhu, S.L. Buchwald, Angew. Chem. Int. Ed. 124, 1962–1965 (2012)CrossRefGoogle Scholar
  44. 44.
    B. Zhoa, X. Peng, Y. Zhu, T.A. Ramirez, R.G. Cornwall, Y. Shi, J. Am. Chem. Soc. 133, 20890–20900 (2011)CrossRefGoogle Scholar
  45. 45.
    M.F. Mastral, M. Perez, P.H. Bos, A. Rudolph, S.R. Harutyuayan, B.L. Feringa, Angew. Chem. Int. Ed. 124, 1958–1961 (2012)CrossRefGoogle Scholar
  46. 46.
    L. Shi, X. Yang, Y. Wang, H. Yang, H. Fua, Adv. Synth. Catal. 356, 1021–1028 (2014)CrossRefGoogle Scholar
  47. 47.
    K. Muniz, Angew. Chem. Int. Ed. 121, 9576–9588 (2009)CrossRefGoogle Scholar
  48. 48.
    S.R. Chemler, Org. Biomol. Chem. 7, 3009–3019 (2009)CrossRefGoogle Scholar
  49. 49.
    R. Samanta, L. Lategahnzab, A.P. Antonchick, Chem. Commun. 48, 3194–3196 (2012)CrossRefGoogle Scholar
  50. 50.
    J. Wen, R.Y. Zhang, S.Y. Chen, J. Zhang, X.Q. Yu, J. Org. Chem. 77, 766–771 (2012)CrossRefGoogle Scholar
  51. 51.
    Y. Wu, S.M. Wong, F. Mao, T.L. Chan, F.Y. Kwong, Org. Lett. 14, 5306–5309 (2012)CrossRefGoogle Scholar
  52. 52.
    A. Beyer, J. Buendia, C. Bolm, Org. Lett. 14, 3948–3951 (2012)CrossRefGoogle Scholar
  53. 53.
    F.P. Crisostomo, T. Martin, R. Carrillo, Angew. Chem. Int. Ed. 53, 2181–2185 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 134, 16516–16519 (2012)CrossRefGoogle Scholar
  55. 55.
    G. Pratsch, T. Wallaschkowski, M.R. Heinrich, Chem. Eur. J. 18, 11555–11559 (2012)CrossRefGoogle Scholar
  56. 56.
    Y.Z. Chen, D.H. Wang, B. Chen, J.J. Zhong, C.H. Tung, L.Z. Wu, J. Org. Chem. 77, 6773–6777 (2012)CrossRefGoogle Scholar
  57. 57.
    R.W. Fischer, F. Roehrscheid, in Applied Homogeneous Catalysis with Organometallic Compounds, 2nd edn. (Wiley, Weinheim, 2002), Vol. 1, pp. 443–467Google Scholar
  58. 58.
    B.T. Guan, B. Wang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 52, 4418–4421 (2013)CrossRefGoogle Scholar
  59. 59.
    H. Qrareya, S. Raviola, S. Protti, M. Fagnoni, A. Albini, J. Org. Chem. 78, 6016–6024 (2013)CrossRefGoogle Scholar
  60. 60.
    C. Raviola, S. Protti, D. Ravelli, M. Mella, A. Albini, M. Fagnoni, J. Org. Chem. 77, 9094–9101 (2012)CrossRefGoogle Scholar
  61. 61.
    X. Zheng, L. Yang, W. Du, A. Ding, H. Guo, Chem. Asian J. 9, 439–442 (2014)CrossRefGoogle Scholar
  62. 62.
    S. Yanagisawa, K. Ueda, T. Taniguchi, K. Itami, Org. Lett. 10, 4673–4676 (2008)CrossRefGoogle Scholar
  63. 63.
    A. Iglesias, E.G. Perez, K. Muniz, Angew. Chem. Int. Ed. 49, 8109–8111 (2010)CrossRefGoogle Scholar
  64. 64.
    A.C. Spivey, T. Fekner, S.E. Spey, H. Adams, J. Org. Chem. 64, 9430–9443 (1999)CrossRefGoogle Scholar
  65. 65.
    F. Mori, N. Fukawa, K. Noguchi, K. Tanaka, Org. Lett. 13, 362–365 (2011)CrossRefGoogle Scholar
  66. 66.
    H.J. Son, W.S. Han, K.R. Wee, D.H. Yoo, J.H. Lee, S.K. Kwon, J. Ko, S.O. Kang, Org. Lett. 10, 5401–5404 (2008)CrossRefGoogle Scholar
  67. 67.
    D.P. Hari, P. Schroll, B. Konig, J. Am. Chem. Soc. 134, 2958–2961 (2012)CrossRefGoogle Scholar
  68. 68.
    S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42, 5400–5449 (2003)CrossRefGoogle Scholar
  69. 69.
    R. Zhu, S.L. Buchwald, Angew. Chem. Int. Ed. 51, 1926–1929 (2012)CrossRefGoogle Scholar
  70. 70.
    T.A.J. Vijay, K.N. Nandeesh, G.M. Raghavendra, K.S. Rangappa, K. Mantelingu, Tetrahedron Lett. 54, 6533–6537 (2013)CrossRefGoogle Scholar
  71. 71.
    R. Wang, Z. Chen, L. Yue, W. Pan, J.J. Zhao, Tetrahedron Lett. 53, 4529–4531 (2012)CrossRefGoogle Scholar
  72. 72.
    G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 108, 3054–3131 (2008)CrossRefGoogle Scholar
  73. 73.
    D.A. Evans, J.L. Katz, G.S. Peterson, T. Hintermann, J. Am. Chem. Soc. 123, 12411–12413 (2001)CrossRefGoogle Scholar
  74. 74.
    H. Deng, J.K. Juan, T. Liu, T.K.W. Kuntz, M.L. Snapper, A.H. Hoyeyda, J. Am. Chem. Soc. 125, 9032–9034 (2003)CrossRefGoogle Scholar
  75. 75.
    N. Jalalian, T.B. Petersen, B. Olofsson, Chem. Eur. J. 18, 14140–14149 (2012)CrossRefGoogle Scholar
  76. 76.
    S. Yang, C. Wua, M. Ruan, Y. Yang, Y. Zhao, J. Nic, W. Yang, J. Xu, J. Tetrahedron Lett. 53, 4288–4292 (2012)CrossRefGoogle Scholar
  77. 77.
    T.B. Peterson, R. Khan, B. Olofsson, Org. Lett. 13, 3462–3465 (2011)CrossRefGoogle Scholar
  78. 78.
    R. Hili, A.K. Yudin, Nat. Chem. Biol. 2, 284–287 (2006)CrossRefGoogle Scholar
  79. 79.
    A.S. Guram, R.A. Rennels, S.L. Buchwald, Angew. Chem. Int. Ed. 34, 1348–1350 (1995)CrossRefGoogle Scholar
  80. 80.
    D.M.T. Chan, K.L. Monaco, R.P. Wang, M.P. Winteres, Tetrahedron Lett. 39, 2933–2936 (1998)CrossRefGoogle Scholar
  81. 81.
    W.C.P. Tsang, M. Zheng, S.L. Buchwald, J. Am. Chem. Soc. 127, 14560–14561 (2005)CrossRefGoogle Scholar
  82. 82.
    P. Gu, J. Sun, Y.K. Kang, M. Yi, X.Q. Li, P. Xue, R. Li, Org. Lett. 15, 1124–1127 (2013)CrossRefGoogle Scholar
  83. 83.
    L. Zhu, L. Cheng, Y. Zhang, R. Xie, J. You, J. Org. Chem. 72, 2737–2743 (2007)CrossRefGoogle Scholar
  84. 84.
    C. Wolf, S. Liu, X. Mei, A.T. August, M.D. Casimir, J. Org. Chem. 71, 3270–3273 (2006)CrossRefGoogle Scholar
  85. 85.
    M.T. Barros, S.S. Dey, C.D. Maycock, Eur. J. Org. Chem. 4, 742–747 (2013)CrossRefGoogle Scholar
  86. 86.
    R. Singh, B.K. Allam, D.S. Raghuvanshi, K.N. Singh, Tetrahedron 69, 1038–1042 (2013)CrossRefGoogle Scholar
  87. 87.
    C. Chen, C. Chen, B. Li, J. Tao, J. Peng, Molecules 17, 12506–12520 (2012)CrossRefGoogle Scholar
  88. 88.
    M.T. Barros, S.S. Dey, C.D. Maycock, P. Rodriquesb, Chem. Commun. 48, 10901–10903 (2012)CrossRefGoogle Scholar
  89. 89.
    J.C. Haber, M.A. Lynch, S.L. Spring, A.D. Pechulis, J. Raker, Y. Wang, Tetrahedron Lett. 52, 5847–5850 (2011)CrossRefGoogle Scholar
  90. 90.
    X. Huang, M. Patil, C. Fares, W. Thiel, N. Maulide, J. Am. Chem. Soc. 135, 7312–7323 (2013)CrossRefGoogle Scholar
  91. 91.
    Y. Zou, E. Zhang, T. Xu, W. Wu, Y. Chen, C. Yuan, W. Weia, X. Zhangd, RSC Adv. 3, 6545–6552 (2013)CrossRefGoogle Scholar
  92. 92.
    Y.P. Zhu, M.C. Liu, F.C. Jia, J.J. Yuan, Q.H. Gao, M. Lian, A.X. Wu, Org. Lett. 14, 3392–3395 (2012)CrossRefGoogle Scholar
  93. 93.
    P. Ceccherelli, M. Curini, F. Epifano, M.C. Marcotullio, O. Rosati, J. Org. Chem. 60, 8412–8413 (1995)CrossRefGoogle Scholar
  94. 94.
    X. Huang, A. Sun, J. Org. Chem. 65, 6561–6565 (2000)CrossRefGoogle Scholar
  95. 95.
    A. Ogawa, Selenium and Tellurium in Organic Synthesis in Main Group Metals in Organic Synthesis (Wiley, Weinheim, 2004), Vol. 2, pp. 813–866Google Scholar
  96. 96.
    C.W. Nogueira, J.B. Rocha, Arch. Toxicol. 85, 1313–1359 (2011)CrossRefGoogle Scholar
  97. 97.
    Y. Kobiki, S.I. Kawaguchi, T. Ohe, A. Ogawa, Beilstein J. Org. Chem. 9, 1141–1147 (2013)CrossRefGoogle Scholar
  98. 98.
    A. Corma, H. Garcia, F.X. Llabre’s i Xamena, Chem. Rev. 110, 4606–4655 (2010)CrossRefGoogle Scholar
  99. 99.
    R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, Y. Mita, K. Kindo, A. Matsuo, M. Kobayashi, H.C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Science 20, 2358–2361 (2002)CrossRefGoogle Scholar
  100. 100.
    S. Horike, M. Dinca, K. Tamaki, J.R. Long, J. Am. Chem. Soc. 130, 5854–5855 (2008)CrossRefGoogle Scholar
  101. 101.
    H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, J. Phys. Chem. C 114, 13362–13369 (2010)CrossRefGoogle Scholar
  102. 102.
    H. Liu, B. Yin, Z. Gao, Y. Li, H. Jiang, Chem. Commun. 48, 2033–2035 (2012)CrossRefGoogle Scholar
  103. 103.
    S. Haldar, S. Mahato, C.K. Jana, Asian J. Org. Chem. 3, 44–47 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Organic Chemistry Division, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations