Research on Chemical Intermediates

, Volume 41, Issue 10, pp 7449–7461 | Cite as

Ultrasonic-assisted synthesis of visible-light-driven TiO2/Bi2O3 nanocomposite photocatalysts: characterization, properties and azo dye removal application

  • Liang An
  • Guanghui Wang
  • Yang Cheng
  • Lei Zhao
  • Fang Gao
  • Yongsheng Tian


TiO2/Bi2O3 nanocomposites (Sonic-TiO2/Bi2O3) were synthesized via combination of thermohydrolysis and ultrasonic chemical precipitation techniques. For the sake of contrast, pure TiO2 nanoparticles (NPs) and conventional TiO2/Bi2O3 nanocomposites (Stir-TiO2/Bi2O3) were also prepared. XRD, FT-IR, FE-SEM, TEM, EDX and UV–Vis studies were adopted to determine the structural, chemical composition and optical properties of the as-prepared samples. The photocatalytic activities of the samples were evaluated by measuring the photo-degradation of Orange II in aqueous solution under visible light irradiation (λ ≥ 400 nm). The efficiencies towards OII degradation were determined to be 44.0, 81.8 and 94.7 % for pure TiO2 NPs, Stir-TiO2/Bi2O3 and Sonic-TiO2/Bi2O3, respectively. These results reveal that the loading of Bi2O3 can greatly improve visible light photocatalytic performance of TiO2, and the ultrasonic treatment can also improve photocatalytic performance of TiO2/Bi2O3 nanocomposites. Based on the experimental results, possible enhanced visible-light photocatalytic degradation mechanisms were also discussed. The present findings may provide a new approach to synthesize high efficiency TiO2/Bi2O3 nanocomposite photocatalysts.


TiO2 Bi2O3 Nanocomposites Ultrasonic Photocatalysis 


  1. 1.
    C.A. Martinez-Huitle, S. Ferro, Chem. Soc. Rev. 35, 1324–1340 (2006)CrossRefGoogle Scholar
  2. 2.
    N. Hudson, A. Baker, D. Reynolds, River Res. Appl. 23, 631–649 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Ahmad, A. Idris, B. Hameed, Desalin. Water Treat. 51, 2554–2563 (2013)CrossRefGoogle Scholar
  4. 4.
    V.O. Abramov, A.V. Abramova, P.P. Keremetin, M.S. Mullakaev, G.B. Vexler, T.J. Mason, Ultrason. Sonochem. 21, 812–818 (2014)CrossRefGoogle Scholar
  5. 5.
    L.M. Nieto, G. Hodaifa, S. Rodríguez, J.A. Giménez, J. Ochando, Chem. Eng. J. 173, 503–510 (2011)CrossRefGoogle Scholar
  6. 6.
    T. Mousanejad, M. Khosravi, S. Tabatabaii, A. Khataee, K. Zare, Res. Chem. Intermed. 40, 711–722 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Zhu, J.S. Chen, X.W. Lou, J. Phys. Chem. C 116, 6873–6878 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Petrella, M. Petrella, G. Boghetich, P. Mastrorilli, V. Petruzzelli, E. Ranieri, D. Petruzzelli, Ind. Eng. Chem. Res. 52, 2201–2208 (2013)CrossRefGoogle Scholar
  9. 9.
    Y.H. Zhao, Appl. Mech. Mater. 416, 1652–1656 (2013)CrossRefGoogle Scholar
  10. 10.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie, T. Jiang, Nano Res 4, 1144–1152 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Muruganandham, R. Amutha, G.J. Lee, S.H. Hsieh, J.J. Wu, M. Sillanpää, J. Phys. Chem. C 116, 12906–12915 (2012)CrossRefGoogle Scholar
  13. 13.
    X. Liu, L. Pan, J. Li, K. Yu, Z. Sun, J. Nanosci. Nanotechnol. 13, 5044–5047 (2013)CrossRefGoogle Scholar
  14. 14.
    H.Y. Jiang, J.J. Liu, K. Cheng, W.B. Sun, J. Lin, J. Phys. Chem. C 117, 20029–20036 (2013)CrossRefGoogle Scholar
  15. 15.
    H.Y. Jiang, K. Cheng, J. Lin, Phys. Chem. Chem. Phys. 14, 12114–12121 (2012)CrossRefGoogle Scholar
  16. 16.
    Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, J. Phys. Chem. C 112, 6258–6262 (2008)CrossRefGoogle Scholar
  17. 17.
    D. Li, Y. Zhang, X. Zhou, S. Guo, J. Hazard. Mater. 258, 42–49 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.N. Huo, X.F. Chen, J. Zhang, G.F. Pan, J.P. Jia, H.X. Li, Appl. Catal. B: Environ. 148, 550–556 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.J. Li, T.P. Cao, C.L. Shao, C.H. Wang, J. Inorg. Mater. 27, 687–692 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Zhao, H.J. Liu, J.H. Qu, Appl. Surf. Sci. 257, 4621–4624 (2011)CrossRefGoogle Scholar
  21. 21.
    Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, J. Phys. Chem. C 112, 6258–6262 (2008)CrossRefGoogle Scholar
  22. 22.
    A.K. Chakraborty, M.E. Hossain, M.M. Rhaman, K.M.A. Sobahan, J. Environ. Sci. 26, 458–465 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Di Paola, M. Bellardita, L. Palmisano, R. Amadelli, L. Samiolo, Catal. Lett. 143, 844–852 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Chakarova, K. Hadjiivanov, Micropor. Mesopor. Mater. 143, 180–188 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Cheng, L. An, J. Lan, F. Gao, R.Q. Tan, X.M. Li, G.H. Wang, Mater. Res. Bull. 48, 4287–4293 (2013)CrossRefGoogle Scholar
  26. 26.
    V. Pilla, S.R. de Lima, A.A. Andrade, A.C.A. Silva, N.O. Dantas, Chem. Phys. Lett. 580, 130–134 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Tortorelli, G. Landi, L. Lisi, G. Russo, Micropor. Mesopor. Mater. 200, 216–224 (2014)CrossRefGoogle Scholar
  28. 28.
    G.Z. Liao, S. Chen, X. Quan, Y.B. Zhang, H.M. Zhao, Appl. Catal. B: Environ. 102, 126–131 (2011)CrossRefGoogle Scholar
  29. 29.
    L.L. Chen, Y. Zhai, H.Y. Ding, G.H. Zhou, Y.F. Zhu, D. Hui, Compos. Part B-Eng. 45, 111–116 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Zhu, S. Wang, J. Wang, D. Zhang, H. Li, Appl. Catal. B: Environ. 102, 120–125 (2011)CrossRefGoogle Scholar
  31. 31.
    P. Malathy, K. Vignesh, M. Rajarajan, A. Suganthi, Ceram. Int. 40, 101–107 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Chauhan, A. Kumar, R. Chaudhary, Res. Chem. Intermed. 39, 645–657 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Liu, B. Wu, Y. Zhao, J. Niu, Y. Zhu, Ceram. Int. 40, 5597–5603 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, S. Liu, Z. Xiu, Q. Lu, H. Sun, G. Liu, J. Nanopart. Res. 16, 1–9 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, J. Photochem. Photobiol. A: Chem. 183, 218–224 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Hou, C. Yang, Z. Wang, S. Jiao, H. Zhu, Appl. Catal. B: Environ. 129, 333–341 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Chen, S. Qin, Y. Liu, F. Xin, X. Yin, Res. Chem. Intermed. 40, 637–648 (2014)CrossRefGoogle Scholar
  38. 38.
    K. Ullah, L. Zhu, Z.D. Meng, S. Ye, S. Sarkar, W.C. Oh, J. Mater. Sci. 49, 4139–4147 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Zhou, W. Wang, L. Zhang, J. Mol. Catal. A: Chem. 268, 195–200 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Liang An
    • 1
  • Guanghui Wang
    • 1
  • Yang Cheng
    • 1
  • Lei Zhao
    • 1
  • Fang Gao
    • 1
  • Yongsheng Tian
    • 1
  1. 1.College of Chemical Engineering and TechnologyWuhan University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations