Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 9, pp 3277–3285 | Cite as

Self-assembly of the light-harvesting complex of photosystem II (LHCII) on alkanethiol-modified gold electrodes

  • Masaharu Kondo
  • Mizuki Amano
  • Fujii Kaoru
  • Ayumi Okuda
  • Shuichi Isigure
  • Takeshisa Dewa
  • Yutaka Amao
  • Hideki Hashimoto
  • Mamoru Nango
Article

Abstract

A light-harvesting complex of photosystem II (LHCII), isolated from spinach, was immobilized onto a gold electrode modified with self-assembled monolayers (SAMs) of alkanethiols, NH2–(CH2) n –SH, n = 2, 6, 8, 11; HOOC–(CH2)7–SH; and CH3–(CH2)7–SH; and a bare electrode. The extent of LHCII complex adsorption according to surface treatment decreased in the order amino groups > carboxylic acid groups > methyl groups and increased with the methylene chain length in NH2–(CH2) n –SH. Interestingly, the photocurrent density depended on the terminal group and the methylene chain length in NH2–(CH2) n –SH and decreased in the order amino groups > methyl groups > carboxylic acid groups. An efficient photocurrent response of the LHCII complex on SAMs of NH2–(CH2) n –SH, n = 8 was observed upon illumination at 680 nm. These results indicated that the LHCII complexes were well organized on the cationic surfaces of the gold electrodes modified with amino alkanethiols. The quantum yield depended on the methylene chain length (n), where the maximum photocurrent response was observed at n = 8, which corresponded to a distance of 1.7 nm between the terminal amino group in NH2–(CH2)8–SH and the gold surface.

Keywords

Light-harvesting complex of photosystem II (LHCII) Self-assembly Photocurrent Electrode 

Notes

Acknowledgments

The authors are grateful to Prof. Ayumi Tanaka (Institute of Low Temperature Science, Hokkaido University, Japan) for the isolation and purification of LHCII complexes and their helpful advice and discussions. M.N. and H.H. are grateful for an international joint grant from JST Crest and the BBSRC for financial support. The present work was partially supported by JSPS KAKENHI Grant Number 25810097, AOARD, Funds for the Development of Human Resources in Science and Technology, and the TATEMATSU Foundation.

References

  1. 1.
    B. Ke, Photosynthesis; ed. by Govindjee (Kluwer, Dordrecht 2001)Google Scholar
  2. 2.
    P.N. Ciesielski, F.M. Hijazi, A.M. Scott, C.J. Faulkner, L. Beard, K. Emmett, S.J. Rosenthal, D. Cliffel, G.K. Jennings, Bioresour. Technol. 101, 3047–3053 (2010)CrossRefGoogle Scholar
  3. 3.
    A.K. Manocchi, D.R. Baker, S.S. Pendley, K. Nguyen, M.M. Hurley, B.D. Bruce, J.J. Sumner, C.A. Lungren, Langmuir 29, 2412–2419 (2013)CrossRefGoogle Scholar
  4. 4.
    L.M. Utschig, N.M. Dimitrijevic, O.G. Poluektov, S.D. Chemerisov, K.L. Mulfort, D.M. Tiede, J. Phys. Chem. Lett. 2, 236–241 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Ishigure, A. Okuda, K. Fujii, Y. Maki, M. Nango, Y. Amao, Bull. Chem. Soc. Jpn. 82, 93–95 (2009)CrossRefGoogle Scholar
  6. 6.
    M.B. Cardoso, D. Smolensky, W.T. Heller, K. Hong, H. O’Neill, Energy Environ. Sci. 4, 181–188 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Nagata, M. Amano, T. Joke, K. Fujii, A. Okuda, M. Kondo, S. Ishigure, T. Dewa, K. Iida, F. Secundo, Y. Amao, H. Hashimoto, M. Nango, ACS Macro Lett. 1, 296–299 (2012)CrossRefGoogle Scholar
  8. 8.
    H.A. Kincaid, T. Niedringhaus, M. Ciobanu, D.E. Cliffel, G.K. Jennings, Langmuir 22, 8114–8120 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Kondo, Y. Nakamura, K. Fujii, M. Nagata, Y. Suemori, D. Dewa, K. Iida, A.T. Gardiner, R.J. Cogdell, M. Nango, Biomacromolecules 8, 2457 (2007)CrossRefGoogle Scholar
  10. 10.
    J.J. Bruke, C.L. Ditto, C.J. Arntzen, Arch. Biochem. Biophys. 187, 252 (1978)CrossRefGoogle Scholar
  11. 11.
    Z. Krupa, N.P.A. Hunter, J.P. Williams, E. Maissen, D.R. James, Plant Physiol. 84, 19 (1987)CrossRefGoogle Scholar
  12. 12.
    Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, W. Chang, Nature 428, 287 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Standfuss, A.C. Terwisscha van Scheltinga, M. Lamborghini, W. Kuhlbrandt, EMBO 24, 919 (2005)Google Scholar
  14. 14.
    H. Imahori, H. Yamada, Y. Nishimura, I. Yamazaki, Y. Sakata, J. Phys. Chem. B 104, 2099–2108 (2000)CrossRefGoogle Scholar
  15. 15.
    H. Imahori, H. Norieda, Y. Nishimura, I. Yamazaki, K. Higuchi, N. Kato, T. Motohiro, H. Yamada, K. Tamaki, M. Arimura, Y. Sakata, J. Phys. Chem. B 104, 1253–1260 (2000)CrossRefGoogle Scholar
  16. 16.
    M.D. Poter, T.B. Bright, D.L. Allara, C.E.D. Chidsey, J. Am. Chem. Soc. 109, 3559–3568 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Masaharu Kondo
    • 1
  • Mizuki Amano
    • 2
  • Fujii Kaoru
    • 2
  • Ayumi Okuda
    • 2
  • Shuichi Isigure
    • 2
  • Takeshisa Dewa
    • 2
  • Yutaka Amao
    • 3
  • Hideki Hashimoto
    • 3
  • Mamoru Nango
    • 2
    • 3
  1. 1.Center for Fostering Young and Innovative ResearchersNagoya Institute of TechnologyNagoyaJapan
  2. 2.Materials Science and EngineeringNagoya Institute of TechnologyNagoyaJapan
  3. 3.OCARINAOsaka City UniversityOsakaJapan

Personalised recommendations