Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 10, pp 7405–7412 | Cite as

Surface electronic structures of lithium nickel oxide solid solutions: selective methane oxidation

  • T. Miyazaki
  • R. Sumii
  • H. Tanaka
  • K. Amemiya
  • S. Hino
Article

Abstract

Ultraviolet photoelectron spectra (UPS) of lithium nickel oxide (Li x Ni2−x O2, 0 < x ≤ 1.0) solid solution were measured using a synchrotron radiation light source. The upper valence UPS are confirmed to consist of five structures for E b < 15 eV. The electronic density of two O2p states changed as the compositional ratio of Li and Ni. After a contact reaction of LiNiO2 and methane gas, the peak intensity of one of two O2p states decreased remarkably. It was found that the surface oxygen at the lower binding energy was selectively contributed to dissociate σ-bond between carbon and hydrogen of methane.

Keywords

Lithium nickel oxides Ultraviolet photoemission spectroscopy Valence band structure Oxidative coupling of methane Selective oxidation 

Notes

Acknowledgments

The authors acknowledge the staff of the UVSOR Facility of the Institute for Molecular Science and the Photon Factory for their helpful advice and technical support. The present study has been performed under the approval of the Photon Factory Advisory Committee (PF PAC No. 2009G615).

References

  1. 1.
    G.E. Keller, M.M. Bhasin, J. Catal. 73, 9–19 (1982)CrossRefGoogle Scholar
  2. 2.
    M. Hatano, K. Otsuka, Inorg. Chim. Acta 146, 243–247 (1988)CrossRefGoogle Scholar
  3. 3.
    M. Gaffney, C.A. Jones, J.J. Leonard, J.A. Sofranko, J. Catal. 114, 422–432 (1988)CrossRefGoogle Scholar
  4. 4.
    L. Mleczko, M. Baerns, Fuel Process. Technol. 42, 217–248 (1995)CrossRefGoogle Scholar
  5. 5.
    J.H. Lunsford, Angew. Chem. 34, 970–980 (1995)CrossRefGoogle Scholar
  6. 6.
    N.G. Maksimov, G.E. Selyutin, A.G. Anshits, E.V. Kondratenko, V.G. Roguleva, Catal. Today 42, 279–281 (1998)CrossRefGoogle Scholar
  7. 7.
    A.G. Dedov, A.S. Loktev, I.I. Moiseev, A. Aboukais, J.F. Lamonier, I.N. Filimonov, Appl. Catal. A 245, 209–220 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Zeng, F.T. Akin, Y.S. Lin, Appl. Catal. A 213, 33–45 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Ito, J.-X. Wang, C.-H. Lin, J.H. Lunsford, J. Am. Chem. Soc. 107, 5062–5068 (1985)CrossRefGoogle Scholar
  10. 10.
    T. Miyazaki, T. Doi, M. Kato, T. Miyake, I. Matsuura, Appl. Surf. Sci. 121(122), 492 (1997)CrossRefGoogle Scholar
  11. 11.
    T. Miyazaki, D. Yoshimura, K. Okudaira, Appl. Catal. A 38, 79–82 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Miyazaki, T. Doi, T. Miyamae, I. Matsuura, Stud. Surf. Sci. Catal. 110, 245–254 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • T. Miyazaki
    • 1
  • R. Sumii
    • 2
    • 3
  • H. Tanaka
    • 1
  • K. Amemiya
    • 3
  • S. Hino
    • 1
  1. 1.Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Institute for Molecular ScienceUltraviolet Synchrotron Orbital Radiation Facility (UVSOR)OkazakiJapan
  3. 3.Institute for Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK-PF)TsukubaJapan

Personalised recommendations