Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 9, pp 6289–6307 | Cite as

Studies on the inhibitive effect of (Z)-4-chloro-N-((2-chloroquinolin-3-yl)methylene)aniline Schiff base on the corrosion of mild steel in 1 N HCl solution

  • Bhupendra M. Mistry
  • Smita Jauhari
Article

Abstract

The effect of novel synthesized Schiff base, namely (Z)-4-chloro-N-((2-chloroquinolin-3-yl)methylene)aniline (4-CCMA) on the corrosion of mild steel in 1 N HCl was investigated using weight loss, potentiodynamic polarization, linear polarization, electrochemical impedance spectroscopy, and scanning electron microscopy. The experimental results showed that 4-CCMA revealed good corrosion inhibition and that the inhibition efficiency increases with the increase of concentration of inhibitor to attain 99.04 % for 4-CCMA at 25 ppm. Polarization measurements suggest that 4-CCMA acts as a mixed-type inhibitor. Electrochemical impedance spectroscopy measurements show an increase of the transfer resistance with the inhibitor concentration. The temperature effect on the corrosion behavior of mild steel in 1 N HCl without and with the inhibitor at 5–25 ppm were studied in the temperature range from 298 to 318 K, and the associated activation energy has been determined. Adsorption of 4-CCMA on the mild steel surfaces in 1 N HCl follows the Langmuir adsorption isotherm model.

Keywords

Corrosion inhibitor EIS Mild steel Polarization SEM Weight loss 

Notes

Acknowledgments

The authors thank the director of the S V National Institute of Technology, Surat, for encouragement and for providing necessary research facilities.

References

  1. 1.
    D.A. Jones, Principles and Prevention of Corrosion, 2nd edn. (Prentice-Hall Inc., New Jersey, 1996)Google Scholar
  2. 2.
    V.S. Sastry, Corrosion Inhibitors (John Wiley & Sons, New York, Principles and Applications, 1998)Google Scholar
  3. 3.
    F. Bentiss, M. Traisnel, M. Lagrenee, J. Appl. Electrochem. 31, 41 (2001)CrossRefGoogle Scholar
  4. 4.
    G. Schmitt, Br. Corros. J. 19, 165 (1984)CrossRefGoogle Scholar
  5. 5.
    B.M. Mistry, N.S. Patel, S. Jauhari, Arch. Appl. Sci. Res. 3(5), 300 (2011)Google Scholar
  6. 6.
    A.S. Fouda, H.A. Mostafa, H.M. El-Abbasy, J. Appl. Electrochem. 40, 163 (2010)CrossRefGoogle Scholar
  7. 7.
    M.J. Bahrami, S.M.A. Hosseini, P. Pilvar, Corros. Sci. 52, 2793 (2010)CrossRefGoogle Scholar
  8. 8.
    M.A. Quraishi, I. Ahamada, A. Singha, S. Shuklaa, B. Lal, V. Singh, Mater. Chem. Phys. 112, 1035 (2008)CrossRefGoogle Scholar
  9. 9.
    K.M. Govindaraju, D. Gopi, L. Kavitha, J. Appl. Electrochem. 39, 2345 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Solmaz, E. Altunbas, G. Kardas, Mater. Chem. Phys. 125, 796 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Trabanelli, in Chemical industries: corrosion mechanism, ed. by F. Mansfeld (Marcel Dekker, New York, 1987) pp. 120Google Scholar
  12. 12.
    I.B. Obot, N.O. Obi-Egbedi, Curr. Appl. Phys. 11, 382 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Deng, X. Li, H. Fu, Corros. Sci. 53, 822 (2011)CrossRefGoogle Scholar
  14. 14.
    M.G. Hosseini, H. Khalilpur, S. Ershad, L. Saghatforoush, J. Appl. Electrochem. 40, 215 (2010)CrossRefGoogle Scholar
  15. 15.
    P. Xuehui, R. Xiangbin, K. Fei, X. Jiandong, H. Baorong, Chin. J. of Chem. Engg. 18, 337 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Jafari, I. Danaee, H. Eskandari, M. RashvandAvei, J. Mater. Sci. Technol. 30, 239 (2014)CrossRefGoogle Scholar
  17. 17.
    K.R. Ansari, M.A. Quraishi, A. Singh, Corros. Sci. 79, 5 (2014)CrossRefGoogle Scholar
  18. 18.
    I. Danaee, O. Ghasemi, G.R. Rashed, M. RashvandAvei, M.H. Maddahy, J. Mol. Struct. 1035, 247 (2013)CrossRefGoogle Scholar
  19. 19.
    D. Daoud, T. Douadi, S. Issaadi, S. Chafaa, Corros. Sci. 79, 50 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Bilgic, N. Caliskan, J. Appl. Electrochem. 31, 79 (2001)CrossRefGoogle Scholar
  21. 21.
    E. Bayol, T. Gurtenb, A.A. Gurtena, M. Erbil, Mater. Chem. Phys. 112, 624 (2008)CrossRefGoogle Scholar
  22. 22.
    B.M. Mistry, S.K. Sahoo, S. Jauhari, J. Electroanal. Chem. 704, 118 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Keles, M. Keles, Res. Chem. Intermed. 40, 193 (2014)CrossRefGoogle Scholar
  24. 24.
    B.M. Mistry, S. Jauhari, J. Dispersion Sci. Technol. 34, 1758 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Chen, H. Su, Y. Song, Y. Gao, J. Zhang, X. Hao, J. Zhao, Res. Chem. Intermed. 39, 3669 (2013)CrossRefGoogle Scholar
  26. 26.
    B.M. Mistry, S. Jauhari, Chem. Eng. Comm. 201, 961 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Singh, J.N. Avyaya, E.E. Ebenso, M.A. Quraishi, Res. Chem. Intermed. 39, 537 (2013)CrossRefGoogle Scholar
  28. 28.
    B.M. Mistry, S. Jauhari, Med. Chem. Res. 22, 647 (2013)CrossRefGoogle Scholar
  29. 29.
    E. Barsoukov, J.R. Macdonald, Impedance spectroscopy; theory, experiment, and applications, 2nd edn. (Wiley Interscience Publications, NJ, 2005)CrossRefGoogle Scholar
  30. 30.
    A.J. Bard, L.R. Faulkner, Electrochemical methods; fundamentals and applications (Wiley Interscience Publications, NY, 2000)Google Scholar
  31. 31.
    J.R. Scully, D.C. Silverman, M.W. Kendig (eds.), Electrochemical impedance: analysis and interpretation (ASTM, West Conshohocken, PA, 1993)Google Scholar
  32. 32.
    F. Mansfeld, Electrochim. Acta 35, 1533 (1990)CrossRefGoogle Scholar
  33. 33.
    S. Fletcher, J. Electrochem. Soc. 141, 1823 (1994)CrossRefGoogle Scholar
  34. 34.
    S. Zhang, Z. Tao, W. Li, B. Hou, Appl. Surf. Sci. 255, 6757 (2009)CrossRefGoogle Scholar
  35. 35.
    G.E. Badr, Corros. Sci. 51, 2529 (2009)CrossRefGoogle Scholar
  36. 36.
    B.M. Mistry, S. Jauhari, Res. Chem. Intermed. 39, 1049 (2013)CrossRefGoogle Scholar
  37. 37.
    E. McCafferty, N. Hackerman, J. Electrochem. Soc. 119, 146 (1972)CrossRefGoogle Scholar
  38. 38.
    B.M. Mistry, N.S. Patel, S.K. Sahoo, S. Jauhari, Bull. Mater. Sci. 35, 459 (2012)CrossRefGoogle Scholar
  39. 39.
    O. L. Riggs Jr, in Corrosion Inhibition, 2nd edn. (C.C. Nathan, Houston, TX, 1973)Google Scholar
  40. 40.
    E.S. Ferreira, C. Giancomelli, F.C. Giacomelli, A. Spinelli, Mater. Chem. Phys. 83, 129 (2004)CrossRefGoogle Scholar
  41. 41.
    C. Cao, Corros. Sci. 38, 2073 (1996)CrossRefGoogle Scholar
  42. 42.
    M. Lebrini, M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss, Corros. Sci. 49, 2254 (2007)CrossRefGoogle Scholar
  43. 43.
    M. El Azhar, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, Corros. Sci. 43, 2229 (2001)CrossRefGoogle Scholar
  44. 44.
    A. Yurt, A. Balaban, S.U. Kandemir, G. Bereket, B. Erk, Mater. Chem. Phys. 85, 420 (2004)CrossRefGoogle Scholar
  45. 45.
    J. R. Macdonald, W. B. Johnson, in Theory in Impedance Spectroscopy, ed. J.R. Macdonald, (John Wiley & Sons, New York, 1987)Google Scholar
  46. 46.
    O. L. Riggs Jr, in Corrosion inhibitors, ed. by C. C. Nathan, (NACE, USA, 1973), pp. 7Google Scholar
  47. 47.
    J. Fu, S. Li, Y. Wang, L. Cao, L. Lu, J. Mater. Sci. 45, 6255 (2010)CrossRefGoogle Scholar
  48. 48.
    S. Martinez, I. Stern, Appl. Surf. Sci. 199, 83 (2002)CrossRefGoogle Scholar
  49. 49.
    T. Szauer, A. Brand, Electrochim. Acta 26, 1253 (1981)CrossRefGoogle Scholar
  50. 50.
    J. Aljourani, K. Raeissi, M.A. Golozar, Corros. Sci. 51, 1836 (2009)CrossRefGoogle Scholar
  51. 51.
    F.M. Donahue, K. Nobe, J. Electrochem. Soc. 112, 886 (1965)CrossRefGoogle Scholar
  52. 52.
    E. Kamis, F. Bellucci, R.M. Latanision, E.S.H. El-r, Corrosion 47, 677 (1991)CrossRefGoogle Scholar
  53. 53.
    B.M. Mistry, N.S. Patel, M.J. Patel, S. Jauhari, Res. Chem. Intermed. 37, 659 (2011)CrossRefGoogle Scholar
  54. 54.
    K. Mallaiyaa, R. Subramaniama, S.S. Srikandana, S. Gowria, N. Rajasekaranb, A. Selvaraj, Electrochim. Acta 56, 3857 (2011)CrossRefGoogle Scholar
  55. 55.
    X. Li, S. Deng, H. Fu, T. Li, Electrochim. Acta 54, 4089 (2009)CrossRefGoogle Scholar
  56. 56.
    T.P. Zhao, G.N. Mu, Corros. Sci. 41, 1937 (1999)CrossRefGoogle Scholar
  57. 57.
    L. Herrag, M. Bouklah, N.S. Patel, B.M. Mistry, B. Hammouti, S. Elkadiri, M. Bouachrine, Res. Chem. Intermed. 38, 1669 (2012)CrossRefGoogle Scholar
  58. 58.
    F. Bentiss, M. Lebrini, M. Lagrenee, Corros. Sci. 47, 2915 (2005)CrossRefGoogle Scholar
  59. 59.
    E.A. Noor, A.H. Al-Moubaraki, Mater. Chem. Phys. 110, 145 (2008)CrossRefGoogle Scholar
  60. 60.
    R. Solmaz, G. Kardas, M. Culha, B. Yazici, M. Erbil, Electrochim. Acta 53, 5941 (2008)CrossRefGoogle Scholar
  61. 61.
    X. Li, S. Deng, H. Fu, G. Mu, Corros. Sci. 51, 620 (2009)CrossRefGoogle Scholar
  62. 62.
    F. Xu, J. Duan, S. Zhang, B. Hou, Mater. Lett. 62, 4072 (2008)CrossRefGoogle Scholar
  63. 63.
    Q.B. Zhang, Y.X. Hua, Electrochim. Acta 54, 1881 (2009)CrossRefGoogle Scholar
  64. 64.
    S.A. Abd El-Makoud, Appl. Surf. Sci. 206, 129 (2003)CrossRefGoogle Scholar
  65. 65.
    R. Solmaz, G. Kardas, B. Yazici, M. Erbil, Colloid. Surf. A. 312, 7 (2008)CrossRefGoogle Scholar
  66. 66.
    H. Keles, M. Keles, I. Dehri, O. Serindag, Mater. Chem. Phys. 112, 173 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Applied Chemistry DepartmentS V National Institute of TechnologySuratIndia

Personalised recommendations