Research on Chemical Intermediates

, Volume 41, Issue 9, pp 6283–6287 | Cite as

Polystyrenic porphyrins as catalysts for alkane oxidation

  • Sara Riaz
  • Muhammad Nasir
  • Jibran Iqbal
  • Mian Hasnain Nawaz


We report herein the catalytic effect of metalloporphyrins (MnP–PS, CoP–PS, ZnP–PS) covalently bonded with one or four arms of polystyrene. These metalloporphyrins were employed as active catalysts for oxidation of ethylbenzene in the presence of freshly prepared O2. Our results show that one-arm polystyrenic porphyrins demonstrate enhanced catalytic efficiency, with better yield as compared with four-arm polystyrenic porphyrins. In addition, the catalytic efficiencies of the studied metalloporphyrins, calculated from gas chromatography–mass spectrometry (GC–MS) analysis, were found to be dependent on the central metal in the order Mn > Co > Zn. We also found that these catalysts have advantages of higher stability, facile separation, and good recyclability with comparable efficiencies.


Metalloporphyrins Polystyrene Catalyst Ethylbenzene 


  1. 1.
    F. Scandola, C. Chiorboli, A. Prodi, E. Iengo, E. Alessio, Photophysical properties of metal-mediated assemblies of porphyrins. Coord. Chem. Rev. 250, 1471–1496 (2006)CrossRefGoogle Scholar
  2. 2.
    L. Xiangfei, H. Nanjiang, L. Jun, M. Hongrui, D. Kai, Z. Ran, Influence of TiO2 impregnated with a novel copper(II) carboxylic porphyrin and its application in photocatalytic degradation of 4-nitrophenol. Res. Chem. Intermed. (2013). doi: 10.1007/s11164-013-1089-0 Google Scholar
  3. 3.
    M. Giuseppe, D.S. Roberta, V. Giuseppe, G. Elisa, P. Leonardo, J. Li, S. Rudolf, D. Garbiela, TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle. Res. Chem. Intermed. 33, 433–448 (2013)Google Scholar
  4. 4.
    J.T. Groves, T.E. Nemo, R.S. Myers, Hydroxylation and epoxidation catalyzed by iron–porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 101, 1032–1033 (1979)CrossRefGoogle Scholar
  5. 5.
    J.L. Zhang, J.S. Huang, C.M. Che, Oxidation chemistry of poly(ethylene glycol)-supported carbonylruthenium(II) and dioxoruthenium(VI) meso-tetrakis(pentafluorophenyl)porphyrin. Chem. Eur. J. 12, 3020–3031 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Lu, X.P. Zhang, Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011)CrossRefGoogle Scholar
  7. 7.
    L. Chen, Y. Yang, D. Jiang, CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 132, 9138–9143 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Rahimi, E. Gholamrezapor, M.R. Naimi-jamal, Oxidation of benzyl alcohols to the corresponding carbonyl compounds catalyzed by copper (II) meso-tetra phenyl porphyrin as cytochrome P-450 model reaction. Inorg. Chem. Commun. 14, 1561–1568 (2011)CrossRefGoogle Scholar
  9. 9.
    H.W. Jiang, Q.Y. Chen, J.C. Xiao, Y.C. Gu, The oxidation of Ni(II) N-confused porphyrins (NCPs) with azo radical initiators and an unexpected intramolecular nucleophilic substitution reaction via a proposed Ni(III) NCP intermediate. Chem. Commun. 3732–3734 (2009). doi: 10.1039/b904615a
  10. 10.
    Q.Z. Ren, Y. Yao, X.J. Ding, Z.S. Hou, D.Y. Yan, Phase-transfer of porphyrins by polypeptide-containing hyperbranched polymers and a novel iron(III) porphyrin biomimetic catalyst. Chem. Commun. 4732–4734 (2009). doi: 10.1039/b904199k
  11. 11.
    W. Ye, Selective oxidation of hydrocarbons catalyzed by iron-containing heterogeneous catalysts. Res. Chem. Intermed. 32, 235–251 (2006)CrossRefGoogle Scholar
  12. 12.
    J.P. Collman, X. Zhang, V.J. Lee, E.S. Uffelman, J.I. Brauman, Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins. Science 261, 1404–1411 (1993)CrossRefGoogle Scholar
  13. 13.
    C.-J. Liu, S.-G. Li, W.-Q. Pang, C.-M. Che, Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation. Chem. Commun. 0, 65–66 (1997)CrossRefGoogle Scholar
  14. 14.
    X.Q. Yu, J.S. Huang, W.Y. Yu, C.M. Che, Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity. J. Am. Chem. Soc. 122, 5337–5342 (2000)CrossRefGoogle Scholar
  15. 15.
    J.L. Zhang, H.B. Zhou, J.S. Huang, C.M. Che, Dendritic ruthenium porphyrins: a new class of highly selective catalysts for alkene epoxidation and cyclopropanation. Chem. Eur. J. 8, 1554–1562 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Sono, M.P. Roach, E.D. Coulter, J.H. Dawson, Heme-containing oxygenases. Chem. Rev. 96, 2841–2888 (1996)CrossRefGoogle Scholar
  17. 17.
    J.L. Zhang, C.M. Che, Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes. Org. Lett. 4, 1911–1914 (2002)CrossRefGoogle Scholar
  18. 18.
    O. Nestler, K. Severin, A ruthenium porphyrin catalyst immobilized in a highly cross-linked polymer. Org. Lett. 3, 3907–3909 (2001)CrossRefGoogle Scholar
  19. 19.
    G.Y. Gao, J.E. Jones, R. Vyas, J.D. Harden, X.P. Zhang, Cobalt-catalyzed aziridination with diphenylphosphoryl azide (DPPA): direct synthesis of N-phosphorus-substituted aziridines from alkenes. J. Org. Chem. 71, 6655–6658 (2006)CrossRefGoogle Scholar
  20. 20.
    S. Fantauzzi, A. Caselli, E. Gallo, Nitrene transfer reactions mediated by metallo–porphyrin complexes. Dalton Trans. 28, 5434–5443 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Sugimoto, K. Kuroda, The cobalt porphyrin–Lewis base system: a highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions. Macromolecules 41, 312–317 (2008)CrossRefGoogle Scholar
  22. 22.
    M.H. Nawaz, J. Liu, F. Liu, X. Wang, W. Zhang, Synthesis of porphyrinic polystyrenes and their self-assembly with pristine fullerene (C60). Mater. Lett. 91, 71–74 (2013)CrossRefGoogle Scholar
  23. 23.
    M.H. Nawaz, L. Xu, F. Liu, W. Zhang, Continuous fibrils from the self-assembly of monochelic polymeric porphyrin and PEGylated fullerene. RSC Adv. 3, 2906–2909 (2013)CrossRefGoogle Scholar
  24. 24.
    X.T. Zhou, Q.L. Yuan, H.B. Ji, Highly efficient aerobic oxidation of oximes to carbonyl compounds catalyzed by metalloporphyrins in the presence of benzaldehyde. Tetrahedron Lett. 51, 613–617 (2010)CrossRefGoogle Scholar
  25. 25.
    W. Zhang, A.U. Shaikh, E.Y. Tsui, T.M. Swager, Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction. Chem. Mater. 21, 3234–3241 (2009)CrossRefGoogle Scholar
  26. 26.
    S.-J. Li, Y.-G. Wang, A novel and selective catalytic oxidation of hydrocarbons to ketones using chloramine–TiO2/Fe(TPP)Cl system. Tetrahedron Lett. 46, 8013–8015 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sara Riaz
    • 1
  • Muhammad Nasir
    • 2
  • Jibran Iqbal
    • 2
  • Mian Hasnain Nawaz
    • 2
  1. 1.Department of Chemical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Interdisciplinary Research Centre in Biomedical MaterialsCOMSATS Institute of Information TechnologyLahorePakistan

Personalised recommendations