Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 8, pp 5635–5648 | Cite as

Ability of two novel α-amino acid-based tridentate ligands to complex Fe3+ in solution

  • Kirandeep Kaur
  • Minati Baral
Article

Abstract

Two novel α-amino acid-based tridentate ligands, L1 and L2, were synthesized, and characterized by use of spectroscopic methods. Potentiometric and spectrophotometric methods were used to study the pH-dependent protonation behavior of the ligands and their complexation towards Fe(III) in aqueous medium of ionic strength, µ = 0.1 M KCl at 25 ± 1 °C. The stability constants of complex species of the types FeLH3, FeLH2, FeLH, FeL, and FeL2 (L = L1 or L2) were determined, and probable structures of the ferric complexes were proposed on the basis of molecular modeling. The complexing ability of the ligands was compared with that of deferiprone (a drug used for medical treatment of iron intoxication) and transferrin (the main Fe-binding protein in plasma).

Keywords

Tridentate ligands Amino acids Potentiometry Spectrophotometry Protonation and stability constants 

Notes

Acknowledgments

The authors would like to thank the Council of Scientific and Industrial Research (CSIR), Human Resource Development Group, PUSA, New Delhi, India, for financial Support and the National Institute of Technology, Kurukshetra, India, for providing infrastructure and research facilities.

References

  1. 1.
    R.C. Hider, R. Choudhury, B.L. Rai, L.S. Dehkordi, S. Singh, Acta Haematol. 95, 6 (1996)CrossRefGoogle Scholar
  2. 2.
    M.D. Cappellini, Best Pract. Res. Clin. Haemat. 18, 289 (2005)CrossRefGoogle Scholar
  3. 3.
    G.J. Kontoghiorghes, K. Pattichis, K. Neocleous, A. Kolnagou, Curr. Med. Chem. 11, 2161 (2004)CrossRefGoogle Scholar
  4. 4.
    G.J. Kontoghiorghes, K. Pattichis, M. Hadjigavriel, K. Neocleous, A. Kolnagou, Transfus. Sci. 23, 23 (2000)CrossRefGoogle Scholar
  5. 5.
    J.C. Barton, Curr. Gastroenterol. Rep. 9, 74 (2007)CrossRefGoogle Scholar
  6. 6.
    E.T. Clark, A.E. Martell, Inorg. Chim. Acta 186, 103 (1991)CrossRefGoogle Scholar
  7. 7.
    R.M. Kirchner, C. Mealli, M. Bailey, M. Howe, L.P. Torre, L.J. Wilson, L.C. Andrews, N.J. Rose, E.C. Lingafelter, Coord. Chem. Rev. 77, 89 (1987)CrossRefGoogle Scholar
  8. 8.
    P. Caravan, C. Orvig, Inorg. Chem. 36, 236 (1997)CrossRefGoogle Scholar
  9. 9.
    A.D. Garnovskii, A.L. Nivorozhkin, V.I. Minkin, Coord. Chem. Rev. 1, 126 (1993)Google Scholar
  10. 10.
    V. Alexander, Chem. Rev. 95, 273 (1995)CrossRefGoogle Scholar
  11. 11.
    C. Orvig, D.J. Berg, S.J. Rettig, J. Am. Chem. Soc. 113, 2528 (1991)CrossRefGoogle Scholar
  12. 12.
    G.G. Bombi, V.B. Di Marco, D. Marton, S. Moro, A. Reheman, A. Tapparo, L. Viero, Polyhedron 26, 3419 (2007)CrossRefGoogle Scholar
  13. 13.
    R.C. Hider, T. Zhouann, NY Acad. Sci. 141, 1054 (2005)Google Scholar
  14. 14.
    S.K. Danuta, R.R. Des, Pharmacolgical. Rev. 57, 549 (2005)Google Scholar
  15. 15.
    I. Turcot, A. Stinzi, J. Xu, K.N. Raymond, J. Biol. Inorg. Chem. 5, 634 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Singh, H. Khodr, M.I. Taylor, R.C. Hider, Biochem. Soc. Symp. 61, 127 (1995)Google Scholar
  17. 17.
    Z.D. Liu, R.C. Hider, Coord. Chem. Rev. 232, 151 (2002)CrossRefGoogle Scholar
  18. 18.
    D.R. Richadson, P. Ponka, J. Lab. Clin. Med. 131, 306 (1998)CrossRefGoogle Scholar
  19. 19.
    J. Sanchiz, P. Esparza, S. Dominguez, F. Brito, A. Mederos, Inorg. Chim. Act. 291, 158 (1999)CrossRefGoogle Scholar
  20. 20.
    R.C. Hider, Z.D. Liu, Curr. Med. Chem. 10, 1051 (2003)CrossRefGoogle Scholar
  21. 21.
    A.S. Ceccato, A. Neves, M.A. de Brito, S.M. Drechsel, A.S. Mangrich, R. Werner, W. Haase, A.J. Bortoluzzi, J. Chem. Soc. Dalton Trans. 1573 (2000)Google Scholar
  22. 22.
    N. Saria, P. Gurkana, S. Cete, I. Sakiyan, Russ. J. Coord. Chem. 32, 511 (2006)CrossRefGoogle Scholar
  23. 23.
    A.A. El-Sherif, M.S. Aljahdali, J. Coord. Chem. 66, 3423 (2013)CrossRefGoogle Scholar
  24. 24.
    M.A. Santos, M. Gil, S. Marques, L. Gano, G. Cantinho, S. Chaves, J. Inorg. Biochem. 92, 43 (2002)CrossRefGoogle Scholar
  25. 25.
    E.T. Clark, A.E. Martell, Inorg. Chim. Acta 196, 185 (1992)CrossRefGoogle Scholar
  26. 26.
    R.J. Motekaitis, A.E. Martell, Inorg. Chim. Acta 183, 71 (1991)CrossRefGoogle Scholar
  27. 27.
    B.S. Furniss, A. J. Hannaford, P.W. G.Smith, A.R. Tatchell, VOGEL’S Textbook of practical organic chemistry 5th edn. 6th impression (Dorling Kindersley, India, 2009), pp. 395–413Google Scholar
  28. 28.
    R.V. Gorkum, J. Berding, D.M. Tooke, A.L. Spek, J. Reedijk, E. Bowman, J. Catal. 252, 110 (2007)CrossRefGoogle Scholar
  29. 29.
    Instructional manual for portable pH/ISE meter Sension2 HACH Company USA (1999)Google Scholar
  30. 30.
    User guide Hyperquad (2006)Google Scholar
  31. 31.
    P. Gans, A. Sabatini, A. Vacca, Talanta 43, 1739 (1996)CrossRefGoogle Scholar
  32. 32.
    User guide Hyperquad Simulation and Speciation Protonic Software, (2009)Google Scholar
  33. 33.
    P. Gans, A. Sabatini, A. Vacca, Annali di chim. 89, 45 (1999)Google Scholar
  34. 34.
    Hyperchem manual for Hyperchem Release 7 for windows, January (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologyKurukshetraIndia

Personalised recommendations