Research on Chemical Intermediates

, Volume 40, Issue 7, pp 2559–2564 | Cite as

Carbon black nanoparticles with a high reversible capacity synthesized by liquid phase plasma process

  • Kang-Seop Yun
  • Bo-Ra Kim
  • Sang-Chai Kim
  • Sang-Chul Jung
  • Woo-Seung Kang
  • Sun-Jae Kim


Carbon blacks synthesized by the liquid phase plasma process in benzene with and without distilled water showed a very high charging capacity of about 1,540–1,600 mAh/g depending on the liquid involved. CBs synthesized from organic benzene only were found to have a higher specific surface area compared to CBs from benzene with water, contributing to the higher charging capacity of 1,600 mAh/g. The charge–discharge cyclic stability (measured from 2 to 20 cycles) of the CBs synthesized from benzene was significantly improved with the addition of water from 58 % to about 70 % reversible capacity. Our results suggest a promising method of producing carbon black nanoparticles at low temperatures with a reasonable performance applicable for lithium ion batteries.


Carbon black Liquid phase plasma process Benzene Pore distribution Lithium ion battery 



This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy. (No. 2011T100200323).


  1. 1.
    M.E. Spahr, D. Goers, A. Leone, S. Stallone, E. Grivei, J. Power Source 196, 3404 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Kossyrev, J. Power Source 201, 347 (2012)CrossRefGoogle Scholar
  3. 3.
    G.T.K. Fey, Y.C. Kao, Mater. Chem. Phys. 73, 37–46 (2002)Google Scholar
  4. 4.
    L. Wang, X. Wang, B. Zou, X. Ma, Y. Qu, C. Rong, Y. Li, Y. Su, Z. Wang, Bioresour. Technol. 102, 8220 (2011)CrossRefGoogle Scholar
  5. 5.
    H.M. Yoo, G.Y. Heo, S.J. Park, Carbon Lett. 12, 252 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Saito, J. Hieda, O. Takai, Thin Solid Films 518, 912 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Guo, X. Wang, B. Xu, Mater. Chem. Phys. 113, 179 (2009)Google Scholar
  8. 8.
    J. Hieda, N. Saito, O. Takai, Surf. Coat. Tech. 202, 5343 (2008)CrossRefGoogle Scholar
  9. 9.
    M.A. Bratescu, S.P. Cho, O. Takai, N. Saito, J. Phys. Chem. C 115, 24569 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Ahmadpour, D.D. Do, Carbon 34, 471 (1996)CrossRefGoogle Scholar
  11. 11.
    B.N. Kolarz, J. Luczynski, A. Trochimczuk, M. Wojaczynska, J. Chromatogr. 408, 308 (1987)CrossRefGoogle Scholar
  12. 12.
    P.S. Ananad, G. Pall, K.A. Reddy, K.M. Popat, B.D. Pasare, J. Polym. Mater. 5, 91 (1988)Google Scholar
  13. 13.
    Y.P. Wu, C.R. Wan, C.Y. Jiang, S.B. Fang, Y.Y. Jiang, Carbon 37, 1901 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kang-Seop Yun
    • 1
  • Bo-Ra Kim
    • 1
  • Sang-Chai Kim
    • 4
  • Sang-Chul Jung
    • 3
  • Woo-Seung Kang
    • 2
  • Sun-Jae Kim
    • 1
  1. 1.Institute/Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulKorea
  2. 2.Department of Metallurgical & Materials EngineeringInha Technical CollegeIncheonKorea
  3. 3.Department of Environmental EngineeringSunchon National UniversitySuncheonKorea
  4. 4.Department of Environmental EducationsMokpo National UniversityMokpoKorea

Personalised recommendations