Skip to main content
Log in

Synthesis, characterization, and KOH activation of nanoporous carbon for increasing CO2 adsorption capacity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. To improve the CO2 adsorption efficiency, ONCs were chemically activated to obtain high specific surface area and micro-/mesopore volume with different KOH amounts (i.e., 0, 1, 2, 3, and 4) as an activating agent. The prepared nanoporous carbons (NCs) materials were analyzed by low-angle X-ray diffraction for confirmation of synthesized ONCs structures. The structural properties of the NCs materials were analyzed by high-angle X-ray diffraction. The textural properties of the NCs materials were examined using the N2/77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO2 adsorption capacity was measured by CO2 isothermal adsorption at 298 K/1 bar. From the results, the NCs activated with KOH showed that the increasing specific surface areas and total pore volumes resulted in the enhancement of CO2 adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.L. Chaffee, G.P. Knowles, Z. Liang, J. Zhang, P. Xiao, P.A. Webley, Int. J. Greenh. Gas Control 1, 11–18 (2007)

    Article  CAS  Google Scholar 

  2. D. Aaron, C. Tsouris, Sep. Sci. Tech. 40, 321–348 (2005)

    Article  CAS  Google Scholar 

  3. A. Bahadori, H.B. Vuthaluru, Int. J. Greenh. Gas Control 3, 768–772 (2009)

    Article  CAS  Google Scholar 

  4. Z. Zhao, X. Cui, J. Ma, R. Li, Int. J. Greenh. Gas Control 1, 355–359 (2007)

    Article  CAS  Google Scholar 

  5. B. Mandal, S.S. Bandyopadhyay, Environ. Sci. Tech. 43, 6314–6317 (2009)

    Article  Google Scholar 

  6. L.Y. Meng, S.J. Park, J. Colloid Interface Sci. 366, 125–129 (2012)

    Article  CAS  Google Scholar 

  7. S.Y. Lee, S.J. Park, Int. J. Hydrogen Energy 35, 6757–6762 (2010)

    Article  CAS  Google Scholar 

  8. S.Y. Lee, S.J. Park, J. Solid State Chem. 184, 2655–2660 (2011)

    Article  CAS  Google Scholar 

  9. R.T. Yang, Gas Separation by Adsorption Processes (World Scientific, Boston, 1987)

    Google Scholar 

  10. D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption (Wiley-VCH, New York, 1994)

    Google Scholar 

  11. E.S. Kikkinides, R.T. Yang, S.H. Cho, Ind. Eng. Chem. Res. 32, 2714–2720 (1993)

    Article  CAS  Google Scholar 

  12. S. Sircar, T.C. Golden, M.B. Rao, Carbon 34, 1–12 (1996)

    CAS  Google Scholar 

  13. R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J.A. Poston, Energy Fuels 15, 279–284 (2001)

    CAS  Google Scholar 

  14. A. Raza, J. Wang, S. Yang, Y. Si, B. Ding, Carbon Lett. 15, 1–14 (2014)

  15. S.J. Park, Y.S. Jang, J.W. Shim, S.K. Ryu, J. Colloid Interface Sci. 260, 259–264 (2003)

  16. S.J. Park, K.D. Kim, J. Colloid Interface Sci. 212, 186–189 (1999)

  17. S. Choi, J.H. Drese, C.W. Jones, ChemSusChem. 2, 796–854 (2009)

    CAS  Google Scholar 

  18. L.Y. Meng, S.J. Park, J. Colloid Interface Sci. 352, 498–503 (2010)

    CAS  Google Scholar 

  19. L.Y. Meng, S.J. Park, J. Colloid Interface Sci. 15, 125–129 (2012)

    Google Scholar 

  20. M. Sevilla, A.B. Fuertes, J. Colloid Interface Sci. 366, 147–154 (2012)

    CAS  Google Scholar 

  21. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Loenowicz, C.T. Kresge, K.D. Schimitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L.J. Schlenker, J. Am. Chem. Soc. 114, 10834–11043 (1992)

    CAS  Google Scholar 

  22. C. Liang, S. Dai, J. Am. Chem. Soc. 128, 5316–5317 (2006)

    CAS  Google Scholar 

  23. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    CAS  Google Scholar 

  24. K.S.W. Sing, D.H. Everett, R.A. Haul, W.L. Moscou, R.A. Pierotti, J. Rouquérol, Pure Appl. Chem. 57, 603–607 (1985)

    CAS  Google Scholar 

  25. S.Y. Lee, H.M. Yoo, S.W. Park, S.H. Park, Y.S. Oh, K.Y. Rhee, S.J. Park, J. Solid State Chem. 215, 201–205 (2014)

  26. T. Yang, A.C. Lua, J. Colloid Interface Sci. 267, 408–417 (2003)

    CAS  Google Scholar 

  27. D. Liu, J.H. Lei, L.P. Guo, D. Qu, Y. Li, B.L. Su, Carbon 50, 476–487 (2012)

    CAS  Google Scholar 

  28. B.J. Kim, M.K. Seo, K.E. Choi, S.J. Park, Appl. Chem. Eng. 22, 167–172 (2011)

    CAS  Google Scholar 

  29. P. Trucano, R. Chen, Nature 258, 136–137 (1975)

    CAS  Google Scholar 

  30. S.Y. Lee, S.J. Park, Carbon Lett. 13, 73–87 (2012)

    Google Scholar 

  31. S.Y. Lee, S.J. Park, J. Colloid Interface Sci. 389, 230–235 (2013)

Download references

Acknowledgments

This work was supported by the Korea CCS R&D Center (KCRC) grant by Ministry of Education, Science and Technology (0031985) and the Carbon Valley Project by Ministry of Trade, Industry and Energy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SY., Yoo, HM., Rhee, K.Y. et al. Synthesis, characterization, and KOH activation of nanoporous carbon for increasing CO2 adsorption capacity. Res Chem Intermed 40, 2535–2542 (2014). https://doi.org/10.1007/s11164-014-1665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1665-y

Keywords

Navigation