Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 8, pp 5411–5421 | Cite as

3-Methyl-1-sulfonic acid imidazolium hydrogen sulfate-catalyzed three-component, one-pot synthesis of 13-aryl-12H-benzo[f]indeno[1,2-b]quinoline-12-one derivatives

  • Nader Ghaffari Khaligh
Article

Abstract

3-Methyl-1-sulfonic acid imidazolium hydrogen sulfate, an efficient, halogen-free, and reusable Brønsted ionic liquid, catalyzed the synthesis of 13-aryl-12H-benzo[f]indeno[1,2-b]quinoline-12-one derivatives by one-pot condensation of 2-naphthylamine, aromatic aldehydes, and 2H-indene-1,3-dione under solvent-free conditions. This method has the advantages of high yields, clean reaction, simplicity, and short reaction time. The catalyst can be recycled and reused four times without significant loss of activity.

Graphical Abstract

Keywords

Benzo[f]indeno[1,2-b]quinolines Brønsted ionic liquid 2-Naphthylamine 2H-Indane-1,3-dione Multicomponent reaction 

Notes

Acknowledgments

I gratefully acknowledge partial financial support from the Research House of Professor Reza. Education Guilan, Rasht, District 1.

References

  1. 1.
    G. Sakata, K. Makino, Y. Karasawa, Heterocycles 27, 2481 (1988)CrossRefGoogle Scholar
  2. 2.
    H. Aramoto, Y. Obora, Y. Ishii, J. Org. Chem. 74, 628 (2009)CrossRefGoogle Scholar
  3. 3.
    X.S. Wang, Q. Li, C.S. Yao, S.J. Tu, Eur. J. Org. Chem. 20, 3513 (2008)CrossRefGoogle Scholar
  4. 4.
    N.G. Kozlov, K.N. Gusak, Russ. J. Org. Chem. 44, 1049 (2008)CrossRefGoogle Scholar
  5. 5.
    M.J.E. Hewlins, R. Salter, Synthesis 14, 2157 (2007)CrossRefGoogle Scholar
  6. 6.
    A.-H. Li, E. Ahmed, X. Chen, M. Cox, A.P. Crew, H.-Q. Dong, M. Jin, L. Ma, B. Panicker, K.W. Siu, A.G. Steinig, K.M. Stolz, P.A.R. Tavares, B. Volk, Q. Weng, D. Werner, M. Mulvihill, J. Org. Biomol. Chem. 5, 61 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Alajarin, A. Vidal, M.-M. Ortin, Tetrahedron 61, 7613 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Sangu, K. Fuchibe, T. Akiyama, Org. Lett. 6, 353 (2004)CrossRefGoogle Scholar
  9. 9.
    P.K. Mahata, C. Venkatesh, U.K.S. Kumar, H. Ila, H. Junjappa, J. Org. Chem. 68, 3966 (2003)CrossRefGoogle Scholar
  10. 10.
    P. Seeman, H.-C. Guan, J. Nobrega, D. Jiwa, R. Markstein, J.-H. Balk, R. Picetti, E. Borrelli, H.H.M. Van Tol, Synapse 25, 137 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Demeunynck, C. Moucheron, A.K.-D. Mesmaeker, Tetrahedron Lett. 43, 261 (2002)CrossRefGoogle Scholar
  12. 12.
    I.L. Baraznenok, V.G. Nenajdenko, E.S. Balenkova, Eur. J. Org. Chem. 4, 937 (1999)CrossRefGoogle Scholar
  13. 13.
    M.M. Ali, T. Tasneem, K.C. Rajanna, P.K.S. Prakash, Synlett 251 (2001)Google Scholar
  14. 14.
    F. Palacios, A.M. Ochoa de Retana, J. Oyarzabal, Tetrahedron 55, 5947 (1999)CrossRefGoogle Scholar
  15. 15.
    P. Charpentier, V. Lobregat, V. Levacher, G. Dupas, G. Queguiner, J. Bourguignon, Tetrahedron Lett. 39, 4013 (1998)CrossRefGoogle Scholar
  16. 16.
    C.S. Cho, B.T. Kim, T.J. Kim, S.C. Shim, Chem. Commun. 24, 2576 (2001)CrossRefGoogle Scholar
  17. 17.
    B. Crousse, J.P. Begue, D. Bonnet-Delpon, J. Org. Chem. 65, 5009 (2000)CrossRefGoogle Scholar
  18. 18.
    X.F. Lin, S.L. Cui, Y.G. Wang, Tetrahedron Lett. 47, 4509 (2006)CrossRefGoogle Scholar
  19. 19.
    X.F. Lin, S.L. Cui, Y.G. Wang, Tetrahedron Lett. 47, 3127 (2006)CrossRefGoogle Scholar
  20. 20.
    V. Arun, P.P. Robinson, S. Manju, P. Leeju, G. Varsha, V. Digna, K.K.M. Yusuff, Dyes Pigm. 82, 268 (2009)CrossRefGoogle Scholar
  21. 21.
    A.A. Fadda, H.A. Etman, F.A. Amer, M. Barghout, J. Chem. Technol. Biotechnol. 62, 170 (1995)CrossRefGoogle Scholar
  22. 22.
    H.S. Bhatti, S. Seshadri, Color. Technol. 120, 151 (2004)CrossRefGoogle Scholar
  23. 23.
    V.H. Patel, M.P. Patel, R.G. Patel, Dyes Pigm. 52, 191 (2002)CrossRefGoogle Scholar
  24. 24.
    D.R. Patel, K.C. Patel, Dyes Pigm. 90, 1 (2011)CrossRefGoogle Scholar
  25. 25.
    N.M. Parekh, K.C. Maheria, J. Sci. Ind. Res. 70, 525 (2011)Google Scholar
  26. 26.
    E.F. Elslager, W.F. Short, H.F. Tendick, J. Heterocycl. Chem. 5, 599 (1968)CrossRefGoogle Scholar
  27. 27.
    R.H. Mansake, M. Kulka, Org. React. 7, 59 (1953)Google Scholar
  28. 28.
    L.S. Povarov, Russ. Chem. Rev. 36, 656 (1967)CrossRefGoogle Scholar
  29. 29.
    V.V. Kouznetsov, Tetrahedron 65, 2721 (2009)CrossRefGoogle Scholar
  30. 30.
    M.G. Haghighi, M. Rashidi, S.M. Nabavizadeh, S. Jamali, R.J. Puddephatt, Dalton Trans. 39, 11396 (2010)CrossRefGoogle Scholar
  31. 31.
    W. Baratta, L. Fanfoni, S. Magnolia, K. Siega, P. Rigo, Eur. J. Inorg. Chem. 9, 1419 (2010)CrossRefGoogle Scholar
  32. 32.
    W. Baratta, M. Ballico, S. Baldino, G. Chelucci, E. Herdtweck, K. Siega, S. Magnolia, P. Rigo, Chem. Eur. J. 14, 9148 (2008)CrossRefGoogle Scholar
  33. 33.
    D. Prema, A.V. Wiznycia, B.M. Scott, J. Hilborn, J. Desper, C.J. Levy, Dalton Trans. 42, 4788 (2007)CrossRefGoogle Scholar
  34. 34.
    D.E. Bierer, L.G. Dubenko, P. Zhang, Q. Lu, P.A. Imbach, A.W. Garofalo, P.W. Phuan, D.M. Fort, J. Litvak, R.E. Geber, B. Sloan, R. Cooper, G.M. Reaven, J. Med. Chem. 41, 2754 (1998)CrossRefGoogle Scholar
  35. 35.
    J.R. Brooks, D. Berman, M.S. Glitzer, L.R. Gordon, R.L. Primka, G.F. Reynolds, G.H. Rasmusson, Prostate 3, 35 (1982)CrossRefGoogle Scholar
  36. 36.
    G. Babu, P.T. Perumal, Tetrahedron Lett. 39, 3225 (1998)CrossRefGoogle Scholar
  37. 37.
    J.S. Yadav, B.V. Subba Reddy, R. Srinivas, Synlett 240 (2001)Google Scholar
  38. 38.
    M. Yamato, Y. Takeuchi, K. Hashigaki, Y. Ikeda, C. Ming-rong, K. Takeuchi, M. Matsushima, T. Tsuruo, T. Tashiro, S. Tsukagoshi, Y. Yamashita, H. Nakano, J. Med. Chem. 32, 1295 (1989)CrossRefGoogle Scholar
  39. 39.
    X. Lu, J.L. Petersen, K.K. Wang, Org. Lett. 5, 3277 (2003)CrossRefGoogle Scholar
  40. 40.
    A. Rampa, A. Bisi, F. Belluti, S. Gobbi, P. Valenti, V. Andrisano, V. Cavrini, A. Cavalli, M. Recanatini, Bioorg. Med. Chem. 8, 497 (2000)CrossRefGoogle Scholar
  41. 41.
    L.W. Deady, J. Desneves, A.J. Kaye, G.J. Finlay, B.C. Baguley, W.A. Denny, Bioorg. Med. Chem. 8, 977 (2000)CrossRefGoogle Scholar
  42. 42.
    L.W. Deady, J. Desneves, A.J. Kaye, G.J. Finlay, B.C. Baguley, W.A. Denny, Bioorg. Med. Chem. 9, 445 (2001)CrossRefGoogle Scholar
  43. 43.
    X. Bu, L.W. Deady, Synth. Commun. 29, 4223 (1999)CrossRefGoogle Scholar
  44. 44.
    M. Schmittel, M. Strittmatter, K. Vollmann, S. Kiau, Tetrahedron Lett. 37, 999 (1996)CrossRefGoogle Scholar
  45. 45.
    C.S. Cho, B.T. Kim, H.J. Choi, T.J. Kim, S.C. Shim, Tetrahedron 59, 7997 (2003)CrossRefGoogle Scholar
  46. 46.
    T. Sunami, K. Nishio, F. Kanzawa, K. Fukuoka, S. Kudoh, J. Yoshikawa, N. Saijo, Cancer Chemother. Pharmacol. 43, 394 (1999)CrossRefGoogle Scholar
  47. 47.
    G.J. Atwell, G.W. Rewcastle, B.C. Baguley, W.A. Denny, J. Med. Chem. 30, 664 (1987)CrossRefGoogle Scholar
  48. 48.
    J.A. Spicer, S.A. Gamage, G.J. Atwell, G.F. Finlay, B.C. Baguley, W.A. Denny, J. Med. Chem. 40, 1919 (1997)CrossRefGoogle Scholar
  49. 49.
    G. Kohlhagen, K. Paull, M. Cushman, P. Nagafuji, Y. Pommier, Mol. Pharmacol. 54, 50 (1998)Google Scholar
  50. 50.
    S. Antony, M. Jayaraman, G. Laco, G. Kohlhagen, K.W. Kohn, M. Cushman, Y. Pommier, Cancer Res. 63, 7428 (2003)Google Scholar
  51. 51.
    P.A. Claret, A.G. Osborne, ed. by G. Jones. The Chemistry of Heterocyclic Compounds, Quinolines, vol 32 (John Wiley & Sons, UK, 1982), Part 2, pp. 31–32Google Scholar
  52. 52.
    Y. Sawada, H. Kayakiri, Y. Abe, K. Imai, A. Katayama, T. Oku, H. Tanaka, J. Med. Chem. 47, 1617 (2004)CrossRefGoogle Scholar
  53. 53.
    M. Groisy Delcey, A. Groisy, D. Carrez, C. Huel, A. Chaironi, P. Ducrot, E. Bisagni, L. Jin, G. Leclercq, Bioorg. Med. Chem. 8, 2629 (2000)CrossRefGoogle Scholar
  54. 54.
    C.H. Cheng, R.M. Chen, C.W. Huang, C.C. Yang, U.S. Patent 20050025995A1, 2005Google Scholar
  55. 55.
    J.L. Kim, I.S. Shin, H. Kim, J. Am. Chem. Soc. 127, 1614 (2005)CrossRefGoogle Scholar
  56. 56.
    M.E. Thompson, B. Ma, P. Djurovich, U.S. Patent 20050164031A1, 2005Google Scholar
  57. 57.
    Y. Sun, J. Sun, C.-G. Yan, Beilstein J. Org. Chem. 9, 8 (2013)CrossRefGoogle Scholar
  58. 58.
    B.-X. Du, M.-Y. Yin, M.-M. Zhang, Y.-L. Li, X.-S. Wang, J. Heterocycl. Chem. 49, 1439 (2012)CrossRefGoogle Scholar
  59. 59.
    G.-P. Lu, C. Cai, J. Chem. Res. 35, 547 (2011)CrossRefGoogle Scholar
  60. 60.
    K. Rad-Moghadam, L. Youseftabar-Miri, Synlett 13, 1969 (2010)CrossRefGoogle Scholar
  61. 61.
    A.K. Aggarwal, S.A. Jenekhe, Macromolecules 24, 6806 (1991)CrossRefGoogle Scholar
  62. 62.
    X. Zhang, A.S. Shetty, S.A. Jenekhe, Macromolecules 32, 7422 (1999)CrossRefGoogle Scholar
  63. 63.
    S.A. Jenekhe, L. Lu, M.M. Alam, Macromolecules 34, 7315 (2001)CrossRefGoogle Scholar
  64. 64.
    M.A.P. Martins, C.P. Frizzo, D.N. Moreira, N. Zanatta, H.G. Bonacorso, Ionic liquids in heterocyclic synthesis. Chem. Rev. 108, 2015 (2008)CrossRefGoogle Scholar
  65. 65.
    R.D. Rogers, K.R. Seddon (eds.), Ionic Liquids: Industrial Applications to Green Chemistry (American Chemical Society, Washington, 2002)Google Scholar
  66. 66.
    V.I. Parvulescu, C. Hardacre, Chem. Rev. 107, 2615 (2007)CrossRefGoogle Scholar
  67. 67.
    D. Zhao, M. Wu, Y. Kou, E. Min, Ionic liquids: applications in catalysis. Catal. Today 74, 157 (2002)CrossRefGoogle Scholar
  68. 68.
    P. Wasserscheid, R. van Hal, A. Bösmann, Green Chem. 4, 400 (2002)CrossRefGoogle Scholar
  69. 69.
    J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J.P. Bazureau, J. Hamelin, Catal. Commun. 3, 185 (2002)CrossRefGoogle Scholar
  70. 70.
    M.T. Garcia, N. Gathergood, P.J. Scammells, Green Chem. 7, 9 (2005)CrossRefGoogle Scholar
  71. 71.
    Y. Gu, J. Zhang, Z. Duan, Y. Deng, Adv. Synth. Catal. 347, 512 (2005)CrossRefGoogle Scholar
  72. 72.
    P. Kalita, R. Kumar, Microporous Mesoporous Mater. 149, 1 (2012)CrossRefGoogle Scholar
  73. 73.
    M.A. Zolfigol, A. Khazaei, A.R. Moosavi-Zare, A. Zare, J. Iran. Chem. Soc. 7, 646 (2010)CrossRefGoogle Scholar
  74. 74.
    C.-X. Miao, L.-N. He, J.-Q. Wang, J.-L. Wang, Adv. Synth. Catal. 351, 2209 (2009)CrossRefGoogle Scholar
  75. 75.
    A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C. Forbes, J.H. Davis Jr, J. Am. Chem. Soc. 124, 5962 (2002)CrossRefGoogle Scholar
  76. 76.
    A. Arfan, J.P. Bazureau, Org. Process. Res. Dev. 9, 743 (2005)CrossRefGoogle Scholar
  77. 77.
    P. Wasserscheid, M. Sesing, W. Korth, Green Chem. 4, 134 (2002)CrossRefGoogle Scholar
  78. 78.
    N.G. Khaligh, J. Mol. Catal. A Chem. 349, 63 (2011)CrossRefGoogle Scholar
  79. 79.
    N.G. Khaligh, Catal. Sci. Technol. 2, 1633 (2012)CrossRefGoogle Scholar
  80. 80.
    D. Zhao, M. Liu, J. Ge, J. Zhang, P. Ren, Chin. J. Org. Chem. 32, 2382 (2012)CrossRefGoogle Scholar
  81. 81.
    N.G. Khaligh, Tetrahedron Lett. 53, 1637 (2012)CrossRefGoogle Scholar
  82. 82.
    N.G. Khaligh, T. Mihankhah, Res. Chem. Inter. doi: 10.1007/s11164-014-1552-6)
  83. 83.
    X.-S. Wang, M.-M. Zhang, Z.-S. Zeng, D.-Q. Shi, S.-J. Tu, X.-Y. Wei, Z.-M. Zong, J. Heterocycl. Chem. 43, 989 (2006)CrossRefGoogle Scholar
  84. 84.
    S. Tu, Y. Zhang, J. Zhang, B. Jiang, R. Jia, J. Zhang, S. Ji, Synlett 17, 2785 (2006)CrossRefGoogle Scholar
  85. 85.
    S. Tu, S. Wu, S. Yan, W. Hao, X. Zhang, X. Cao, Z. Han, B. Jiang, F. Shi, M. Xia, J. Zhou, J. Comb. Chem. 11, 239 (2009)CrossRefGoogle Scholar
  86. 86.
    M.M. Heravi, T. Hosseini, F. Derikvand, S.Y.S. Beheshtiha, F.F. Bamoharram, Synth. Commun. 40, 2402 (2010)CrossRefGoogle Scholar
  87. 87.
    X.-S. Wang, J. Zhou, K. Yang, Y.-L. Li, Tetrahedron Lett. 52, 612 (2011)CrossRefGoogle Scholar
  88. 88.
    P.K. Tapaswi, C. Mukhopadhyay, Arkivoc 10, 287 (2011)CrossRefGoogle Scholar
  89. 89.
    G. Bhargava, C. Mohan, M.P. Mahajan, Tetrahedron 64, 3017 (2008)CrossRefGoogle Scholar
  90. 90.
    D.-Q. Shi, S.-N. Ni, F. Yang, J.-W. Shi, G.-L. Dou, X.-Y. Li, X.-S. Wang, S.-J. Ji, J. Heterocycl. Chem. 45, 693 (2008)CrossRefGoogle Scholar
  91. 91.
    D.-Q. Shi, F. Yang, S.-N. Ni, J. Heterocycl. Chem. 46, 469 (2009)CrossRefGoogle Scholar
  92. 92.
    H. Eshghi, M.A. Nasseri, R. Sandaroos, H.R. Molaei, S. Damavandi, Synth. React. Inorg. Metal-Org. Nano-Metal. Chem. 42, 573 (2012)CrossRefGoogle Scholar
  93. 93.
    OECD Chemical Group, Ready Biodegradability: Modified OECD Screening Test. Method 301 E. OECD Revised Guidelines for Tests for Ready Biodegradability (Paris, 1993)Google Scholar
  94. 94.
    N. Gathergood, M.T. Garcia, P.J. Scammells, Green Chem. 6, 166 (2004)CrossRefGoogle Scholar
  95. 95.
    APHA (American Public Health), AWWA (American Water Works Association), and WPCF (Water Pollution Control Federation), Method 508B, Standard Methods for the Examination of Water and Wastewater, 16th edn. (Washington, 1985), pp. 532–537Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Research House of Professor RezaEducation GuilanRashtIran

Personalised recommendations