Research on Chemical Intermediates

, Volume 41, Issue 8, pp 5389–5398 | Cite as

Quantum mechanical study of the alkoxide-independent pathway of reductive elimination of C–O from palladium (p-cyanophenyl) neopentoxide complex

  • Mehran Najafi Ardabili
  • Ali Morsali
  • S. Ali Beyramabadi
  • Hamed Chegini
  • Azar Gharib


In this study the alkoxide-independent pathway of reductive elimination of C–O from palladium (p-cyanophenyl) neopentoxide complex in THF at 47 °C was investigated theoretically by use of density functional theory and the solvent polarized continuum model. On the basis of experimental results a two-pathway mechanism had been proposed: a concerted process (path a) and a two-step process (path b) initiated by inner-sphere attack of the alkoxide ligand on the ipso-carbon atom of the palladium-bound aryl group (step 1) then Pd–C heterolysis to form p-neopentoxybenzonitrile (step 2). The activation energies of the two pathways were calculated by use of the quantum mechanical approach and compared with each other and with experimental results.


Palladium (p-cyanophenyl) neopentoxide Mechanism Activation energy Alkoxide Density functional theory 



We thank the Center of Theoretical Research of the Kharazmi Institute for allocation of computer time.


  1. 1.
    A. de Meijere, F. Diederich, Metal-Catalyzed Cross-Coupling Reactions (Wiley, Weinheim, 2004)CrossRefGoogle Scholar
  2. 2.
    J. Tsuji, Palladium Reagents And Catalysts. New Perspectives for the 21st Century (Wiley, London, 2004)CrossRefGoogle Scholar
  3. 3.
    S.A. Beyramabadi, H. Eshtiagh-Hosseini, M.R. Housaindokht, A. Morsali, Organometallics 27, 72 (2008)CrossRefGoogle Scholar
  4. 4.
    S.A. Beyramabadi, H. Eshtiagh-Hosseini, M.R. Housaindokht, A. Morsali, J. Mol. Struct. (THEOCHEM) 903, 108 (2009)CrossRefGoogle Scholar
  5. 5.
    H. Eshtiagh-Hosseini, S.A. Beyramabadi, A. Morsali, M.R. Housaindokht, J. Mol. Struct. (THEOCHEM) 941, 138 (2010)CrossRefGoogle Scholar
  6. 6.
    L.J. Goossen, D. Koley, H.L. Hermann, W. Thiel, Organometallics 24, 2398 (2005)CrossRefGoogle Scholar
  7. 7.
    E.-I. Negishi, A. de Meijere, Handbook of Organ Palladium Chemistry for Organic Synthesis (Wiley, New York, 2002)CrossRefGoogle Scholar
  8. 8.
    N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995)CrossRefGoogle Scholar
  9. 9.
    A.B. Patel, K.H. Chikhalia, P. Kumari, Res. Chem. Intermed. (2013). doi: 10.1007/s11164-013-1377-8 Google Scholar
  10. 10.
    A. De Meijere, F.E. Meyer, Chem. Int. Ed. Engl. 33, 2379 (1995)CrossRefGoogle Scholar
  11. 11.
    I.P. Beletskaya, A.V. Cheprakov, Chem. Rev. 100, 3009 (2000)CrossRefGoogle Scholar
  12. 12.
    J.K. Stille, Angew. Chem. Int. Ed. Engl. 25, 508 (1986)CrossRefGoogle Scholar
  13. 13.
    Q. Du, Y. Li, Res. Chem. Intermed. 38, 1807 (2012)CrossRefGoogle Scholar
  14. 14.
    J.P. Wolfe, H. Tomori, J.P. Sadighi, J. Yin, S.L. Buchwald, J. Org. Chem. 65, 1158 (2000)CrossRefGoogle Scholar
  15. 15.
    R.A. Widenhoefer, H.A. Zhong, S.L. Buchwald, J. Am. Chem. Soc. 119, 6787 (1997)CrossRefGoogle Scholar
  16. 16.
    R.A. Widenhoefer, S.L. Buchwald, J. Am. Chem. Soc. 120, 6504 (1998)CrossRefGoogle Scholar
  17. 17.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  18. 18.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  19. 19.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  20. 20.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 (Gaussian Inc., Pittsburgh, 2003)Google Scholar
  21. 21.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)CrossRefGoogle Scholar
  22. 22.
    S.H. Vahidi, A. Morsali, S.A. Beyramabadi, Comput. Theor. Chem. 994, 41 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Morsali, F. Hoseinzade, A. Akbari, S.A. Beyramabadi, R. Ghiasi, J. Solut. Chem. 42, 1902 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Akbari, F. Hoseinzade, A. Morsali, S.A. Beyramabadi, Inorg. Chim. Acta 394, 423 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981)CrossRefGoogle Scholar
  26. 26.
    J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994)CrossRefGoogle Scholar
  27. 27.
    R. Cammi, J. Tomasi, J. Comput. Chem. 16, 1449 (1995)CrossRefGoogle Scholar
  28. 28.
    J.F. Hartwig, Inorg. Chem. 46, 1936 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mehran Najafi Ardabili
    • 1
  • Ali Morsali
    • 1
  • S. Ali Beyramabadi
    • 1
  • Hamed Chegini
    • 1
  • Azar Gharib
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations