Research on Chemical Intermediates

, Volume 41, Issue 8, pp 5167–5176 | Cite as

Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation

  • Changwei Zou
  • Feng Liang
  • Shuwen Xue


ZnO nanotubes with breaches in the walls (Breached ZnO nanotubes) with diameters of 50–200 nm and lengths up to several micrometers have been produced in high yield on glass substrates by heating Zn powder at 600–700 °C at a total gas pressure of 20 Pa. We assume formation of ZnO nanotubes involves four steps: formation of Zn vapor; formation of ZnO nanoplates; transformation of ZnO nanoplates into ZnO nanoleaves; and transformation of ZnO nanoleaves into ZnO nanotubes. The optical properties of nanotubes were studied by use of photoluminescence spectroscopy; strong green emission related to oxygen vacancies was observed. Study of the degradation of methyl orange (MO) revealed that the photocatalytic activity of the nanotubes was high, because of their high surface-to-volume ratios and abundant oxygen vacancies near their surfaces. This type of high-surface-area ZnO nanotube has potential for environmental applications.


Nanostructures Vapor deposition SEM Surface properties 



This work was supported by the National Natural Science Foundation of China under contract 61106124, the Science Foundation of Guangdong Province (S2011040000756), the Foundation for Distinguished Young Talents in Higher Education of Guangdong (LYM11089), and the Doctoral Program of Zhanjiang Normal University (ZL1007).


  1. 1.
    J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Heller, Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J. Phys. Chem. 99, 5633 (1995)CrossRefGoogle Scholar
  2. 2.
    F. Xu, Z.Y. Yuan, M. Halasa, B.L. Su, High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties. Appl. Phys. A 86, 181 (2007)CrossRefGoogle Scholar
  3. 3.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  4. 4.
    J.M. Nedeljkovic, M.T. Nenadovic, O.I. Micic, A.J. Nozic, Enhanced photoredox chemistry in quantized semiconductor colloids. J. Phys. Chem. 90, 12 (1986)CrossRefGoogle Scholar
  5. 5.
    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Res. Chem. Intermed. 39, 3181 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Mo, J. Tang, M. Zheng, Q. Lu, Y. Chen, H. Guan, Res. Chem. Intermed. 39, 3981 (2013)CrossRefGoogle Scholar
  7. 7.
    J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Res. Chem. Intermed. (2013). doi: 10.1007/s11164-013-1363-1 Google Scholar
  8. 8.
    Z. Dang, Y. Wu, X. Zhang, Y. Yao, D. Wu, F. Xu, Res. Chem. Intermed. (2013). doi: 10.1007/s11164-013-1472-x Google Scholar
  9. 9.
    J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3, 235 (2003)CrossRefGoogle Scholar
  10. 10.
    X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348 (2004)CrossRefGoogle Scholar
  11. 11.
    Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003)CrossRefGoogle Scholar
  12. 12.
    J.Q. Hu, Y. Bando, Growth and optical properties of single-crystal tubular ZnO whiskers. Appl. Phys. Lett. 82, 1401 (2003)CrossRefGoogle Scholar
  13. 13.
    J.S. Jeong, J.Y. Lee, J.H. Cho, H.J. Suh, C.J. Lee, Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem. Mater. 17, 2752 (2005)CrossRefGoogle Scholar
  14. 14.
    X.H. Kong, X.M. Sun, X.L. Li, Y.D. Li, Solvothermal growth of highly oriented wurtzite-structured ZnO nanotube arrays on zinc foil. Mater. Chem. Phys. 82, 997 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Lin, J. Zhang, C. Boothroyd, Y.L. Foo, M. Yeadon, K.P. Loh, Hollowing mechanism of zinc sulfide nanowires in vacuum induced by an atomic oxygen beam. J. Phys. Chem. B 108, 9631 (2004)CrossRefGoogle Scholar
  16. 16.
    D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B 403, 3713 (2008)CrossRefGoogle Scholar
  17. 17.
    W.Y. Chang, C.A. Lin, J.H. He, T.B. Wu, Appl. Phys. Lett. 96, 242109 (2010)CrossRefGoogle Scholar
  18. 18.
    X.F. Wang, R.K. Zheng, Z.W. Liu, H.P. Ho, J.B. Xu, S.P. Ringer, Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 19, 455702 (2008)CrossRefGoogle Scholar
  19. 19.
    K. Vanheusdan, W.L. Warren, C.H. Seager, D.R. Tallent, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
  20. 20.
    D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xei, S.L. Shi, S.J. Xu, W.K. Chan, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 85, 1601 (2004)CrossRefGoogle Scholar
  21. 21.
    M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001)CrossRefGoogle Scholar
  22. 22.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407 (2001)CrossRefGoogle Scholar
  23. 23.
    C. Drouilly, J.M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, V. Lecocq, H. Vezin, H. Lauron-Pernot, G. Costentin, J. Phys. Chem. C 116, 21297 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Boonchun, W.R.L. Lambrecht, Phys. Status Solidi B 250, 2091 (2013)Google Scholar
  25. 25.
    H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, E. Erdem, Phys. Rev. B 86, 014113 (2012)CrossRefGoogle Scholar
  26. 26.
    Y.H. Ao, J.J. Xu, D.G. Fu, C.W. Yuan, A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. J. Hazard. Mater. 167, 413 (2009)CrossRefGoogle Scholar
  27. 27.
    S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Mater. Lett. 93, 423 (2013)CrossRefGoogle Scholar
  28. 28.
    H.C. Yatmaz, A. Akyol, M. Bayramoglu, Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind. Eng. Chem. Res. 43, 6035 (2004)CrossRefGoogle Scholar
  29. 29.
    R. Annapoorani, M.R. Dhananjeyan, R. Renganathan, An investigation on ZnO photocatalysed oxidation of uracil. J. Photochem. Photobiol. A 111, 215 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhysicsZhanjiang Normal UniversityZhanjiangChina

Personalised recommendations