Skip to main content
Log in

Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

ZnO nanotubes with breaches in the walls (Breached ZnO nanotubes) with diameters of 50–200 nm and lengths up to several micrometers have been produced in high yield on glass substrates by heating Zn powder at 600–700 °C at a total gas pressure of 20 Pa. We assume formation of ZnO nanotubes involves four steps: formation of Zn vapor; formation of ZnO nanoplates; transformation of ZnO nanoplates into ZnO nanoleaves; and transformation of ZnO nanoleaves into ZnO nanotubes. The optical properties of nanotubes were studied by use of photoluminescence spectroscopy; strong green emission related to oxygen vacancies was observed. Study of the degradation of methyl orange (MO) revealed that the photocatalytic activity of the nanotubes was high, because of their high surface-to-volume ratios and abundant oxygen vacancies near their surfaces. This type of high-surface-area ZnO nanotube has potential for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Heller, Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J. Phys. Chem. 99, 5633 (1995)

    Article  CAS  Google Scholar 

  2. F. Xu, Z.Y. Yuan, M. Halasa, B.L. Su, High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties. Appl. Phys. A 86, 181 (2007)

    Article  CAS  Google Scholar 

  3. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  4. J.M. Nedeljkovic, M.T. Nenadovic, O.I. Micic, A.J. Nozic, Enhanced photoredox chemistry in quantized semiconductor colloids. J. Phys. Chem. 90, 12 (1986)

    Article  CAS  Google Scholar 

  5. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Res. Chem. Intermed. 39, 3181 (2013)

    Article  CAS  Google Scholar 

  6. M. Mo, J. Tang, M. Zheng, Q. Lu, Y. Chen, H. Guan, Res. Chem. Intermed. 39, 3981 (2013)

    Article  CAS  Google Scholar 

  7. J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1363-1

    Google Scholar 

  8. Z. Dang, Y. Wu, X. Zhang, Y. Yao, D. Wu, F. Xu, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1472-x

    Google Scholar 

  9. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3, 235 (2003)

    Article  CAS  Google Scholar 

  10. X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348 (2004)

    Article  CAS  Google Scholar 

  11. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003)

    Article  CAS  Google Scholar 

  12. J.Q. Hu, Y. Bando, Growth and optical properties of single-crystal tubular ZnO whiskers. Appl. Phys. Lett. 82, 1401 (2003)

    Article  CAS  Google Scholar 

  13. J.S. Jeong, J.Y. Lee, J.H. Cho, H.J. Suh, C.J. Lee, Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem. Mater. 17, 2752 (2005)

    Article  CAS  Google Scholar 

  14. X.H. Kong, X.M. Sun, X.L. Li, Y.D. Li, Solvothermal growth of highly oriented wurtzite-structured ZnO nanotube arrays on zinc foil. Mater. Chem. Phys. 82, 997 (2003)

    Article  CAS  Google Scholar 

  15. M. Lin, J. Zhang, C. Boothroyd, Y.L. Foo, M. Yeadon, K.P. Loh, Hollowing mechanism of zinc sulfide nanowires in vacuum induced by an atomic oxygen beam. J. Phys. Chem. B 108, 9631 (2004)

    Article  CAS  Google Scholar 

  16. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B 403, 3713 (2008)

    Article  CAS  Google Scholar 

  17. W.Y. Chang, C.A. Lin, J.H. He, T.B. Wu, Appl. Phys. Lett. 96, 242109 (2010)

    Article  Google Scholar 

  18. X.F. Wang, R.K. Zheng, Z.W. Liu, H.P. Ho, J.B. Xu, S.P. Ringer, Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 19, 455702 (2008)

    Article  Google Scholar 

  19. K. Vanheusdan, W.L. Warren, C.H. Seager, D.R. Tallent, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)

    Article  Google Scholar 

  20. D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xei, S.L. Shi, S.J. Xu, W.K. Chan, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 85, 1601 (2004)

    Article  CAS  Google Scholar 

  21. M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001)

    Article  CAS  Google Scholar 

  22. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407 (2001)

    Article  CAS  Google Scholar 

  23. C. Drouilly, J.M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, V. Lecocq, H. Vezin, H. Lauron-Pernot, G. Costentin, J. Phys. Chem. C 116, 21297 (2012)

    Article  CAS  Google Scholar 

  24. A. Boonchun, W.R.L. Lambrecht, Phys. Status Solidi B 250, 2091 (2013)

    CAS  Google Scholar 

  25. H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, E. Erdem, Phys. Rev. B 86, 014113 (2012)

    Article  Google Scholar 

  26. Y.H. Ao, J.J. Xu, D.G. Fu, C.W. Yuan, A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. J. Hazard. Mater. 167, 413 (2009)

    Article  CAS  Google Scholar 

  27. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Mater. Lett. 93, 423 (2013)

    Article  CAS  Google Scholar 

  28. H.C. Yatmaz, A. Akyol, M. Bayramoglu, Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind. Eng. Chem. Res. 43, 6035 (2004)

    Article  CAS  Google Scholar 

  29. R. Annapoorani, M.R. Dhananjeyan, R. Renganathan, An investigation on ZnO photocatalysed oxidation of uracil. J. Photochem. Photobiol. A 111, 215 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under contract 61106124, the Science Foundation of Guangdong Province (S2011040000756), the Foundation for Distinguished Young Talents in Higher Education of Guangdong (LYM11089), and the Doctoral Program of Zhanjiang Normal University (ZL1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., Liang, F. & Xue, S. Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation. Res Chem Intermed 41, 5167–5176 (2015). https://doi.org/10.1007/s11164-014-1620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1620-y

Keywords

Navigation