Research on Chemical Intermediates

, Volume 40, Issue 6, pp 2217–2227 | Cite as

A new member of tetranuclear dinitrosyl iron complexes (DNICs) with 2-mercaptothiazoline ligand: synthesis, structure and properties

  • Chien-Hong Chen
  • Jheng-Hong Wang
  • Jing-Yi Huang
  • Chung-Hung Hsieh


A new tetranuclear dinitrosyliron complex [(μ-SC3H4SN)Fe(NO)2]4 (2), each of a Fe center coordinated with two S or two N, was prepared by CO replacement from the reduced precursor (CO)2Fe(NO)2 with 1 equiv of HSC3H4SN (2-mercaptothiazoline) in the presence of O2(g). The structure of 2 is similar to [(Imid-iPr)Fe(NO)2]4 (Imid-iPr = 2-isopropylimidazole) (Hess et al. J Am Chem Soc 133:20426–20434, 2011), and both complexes comprise a quadrilateral plane of irons with corresponding ligands, SC3H4SN or Imid-iPr, bridging the edges and two nitrosyl ligands capping the irons at the corners. An additional equiv of SC3H4SN was added to 2, which results in the mononuclear {Fe(NO)2}9 (SC3H4SN)2Fe(NO) 2 (3), in the manner of N bound-[SC3H4SN]. Reaction of (TMEDA)IFe(NO)2 (TMEDA = tetramethylethylenediamine) and complex 3 leads to the formation of complex 2. Dinuclear complex [(μ-C5H7N2)Fe(NO)2]2 (4) can be synthesized by the ligand displacement of SC3H4SN to C5H7N2 (3,5-dimethylpyrazolate) of 2 (Chong et al. Can J Chem 57:3119–3125, 1979). Complexes 24 were characterized by IR and UV–Vis. The molecular structures of 2 and 3 were determined by X-ray single crystal diffraction.


Dinitrosyl iron complex DNIC Tetranuclear Nitrosyl Nitric oxide 2-Mercaptothiazoline 



We gratefully acknowledge financial support from the National Science Council of Taiwan. The authors thank Dr. Gene-Hsiang Lee for the single-crystal X-ray structural determinations.

Supplementary material

11164_2014_1599_MOESM1_ESM.pdf (191 kb)
Supplementary material 1 (PDF 191 kb)
11164_2014_1599_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 63 kb)
11164_2014_1599_MOESM3_ESM.pdf (48 kb)
Supplementary material 3 (PDF 48 kb)
11164_2014_1599_MOESM4_ESM.cif (17 kb)
Supplementary material 4 (CIF 17 kb)
11164_2014_1599_MOESM5_ESM.cif (17 kb)
Supplementary material 5 (CIF 17 kb)
11164_2014_1599_MOESM6_ESM.cif (14 kb)
Supplementary material 6 (CIF 14 kb)
11164_2014_1599_MOESM7_ESM.docx (765 kb)
Supplementary material 7 (DOCX 766 kb)


  1. 1.
    R. Morphy, C. Kay, Z. Rankovic, Drug Discov. Today 9, 641–651 (2004)CrossRefGoogle Scholar
  2. 2.
    K–.K. Lin, S.-C. Wu, K.-M. Hsu, C.-H. Hung, W.-F. Liaw, Y.-M. Wang, Org. Lett. 15, 4242–4245 (2013)CrossRefGoogle Scholar
  3. 3.
    T.D. Bradshaw, S. Wrigley, D.-F. Shi, R.J. Schultz, K.D. Paul, M.F.G. Stevens, Br. J. Cancer 77, 745–752 (1998)CrossRefGoogle Scholar
  4. 4.
    E.A. Jaimes, D. del Castillo, M.S. Rutherford, L. Raij, J. Am. Chem. Soc. 12, 1204–1210 (2001)Google Scholar
  5. 5.
    G.C.P. May, P.K. Moore, C.P. Page, Br. J. Pharmacol. 102, 759–763 (1991)CrossRefGoogle Scholar
  6. 6.
    Y.P. Tao, T.P. Misko, A.C. Howlette, C. Klein, Development 124, 3587–3595 (1997)Google Scholar
  7. 7.
    J. MacMicking, Q. Xie, C. Nathan, Annu. Rev. Immunol. 15, 323–350 (1997)CrossRefGoogle Scholar
  8. 8.
    J.A. McCleverty, Chem. Rev. 104, 403–418 (2004)CrossRefGoogle Scholar
  9. 9.
    C. Badorff, B. Fichtlscherer, A. Muelsch, A.M. Zeiher, S. Dimmeler, Nitric Oxide 6, 305–312 (2002)CrossRefGoogle Scholar
  10. 10.
    J.S. Stamler, D.J. Singel, J. Loscalzo, Science 258, 1898–1902 (1992)CrossRefGoogle Scholar
  11. 11.
    J.S. Stamler, Cell 78, 931–936 (1994)CrossRefGoogle Scholar
  12. 12.
    M. Boese, P.I. Mordvintcev, A.F. Vanin, R. Busse, A. Muelsch, J. Biol. Chem. 270, 29244–29249 (1995)CrossRefGoogle Scholar
  13. 13.
    Y. Henry, M. Lepoivre, J.C. Drapier, C. Ducrocq, J.L. Boucher, A. Guissani, FASEB J. 7, 1124–1134 (1993)Google Scholar
  14. 14.
    R. Radi, J.S. Beckman, K.M. Bush, B.A. Freeman, J. Biol. Chem. 266, 4244–4250 (1991)Google Scholar
  15. 15.
    A. Mulsch, Drug Res. 44, 408–411 (1994)Google Scholar
  16. 16.
    A.F. Vanin, P.I. Mordvintcev, S. Hauschildt, A. Muelsch, Biochim. Biophys. Acta Mol. Cell Res. 1177, 37–42 (1993)CrossRefGoogle Scholar
  17. 17.
    E. Cesareo, L.J. Parker, J.Z. Pedersen, M. Nuccetelli, A.P. Mazzetti, A. Pastore, G. Federici, A.M. Caccuri, G. Ricci, J.J. Adams, M.W. Parker, M.J. Lo, Bello. Biol. Chem. 280, 42172–42180 (2005)CrossRefGoogle Scholar
  18. 18.
    A.F. Vanin, Open Conf. Proc. J. 4, 47–53 (2013)CrossRefGoogle Scholar
  19. 19.
    S.M. Aldoshin, K.A. Lyssenko, M.Y. Antipin, N.A. Sanina, V.V. Gritsenko, J. Mol. Struct. 875, 309–315 (2008)CrossRefGoogle Scholar
  20. 20.
    N.A. Sanina, T.N. Rudneva, S.M. Aldoshin, G.V. Shilov, D.V. Kortchagin, Y.M. Shulga, V.M. Martynenko, N.S. Ovanesyan, Inorg. Chim. Acta 359, 570–576 (2006)CrossRefGoogle Scholar
  21. 21.
    O.A. Rakova, N.A. Sanina, S.M. Aldoshin, N.V. Goncharova, G.V. Shilov, Y.M. Shulga, N.S. Ovanesyan, Inorg. Chem. Commun. 6, 145–148 (2003)CrossRefGoogle Scholar
  22. 22.
    N. A.Sanina, T.N. Roudneva, G.V. Shilov, R. Morgunov, N.S. Ovanesyan, S. M. Aldoshin, Dalton Trans. 1703–1706 (2009)Google Scholar
  23. 23.
    N.A. Sanina, O.A. Rakova, S.M. Aldoshin, G.V. Shilov, Y.M. Shulga, A.V. Kulikov, N.S. Ovanesyan, Mendeleev Commun. 14, 7–8 (2004)CrossRefGoogle Scholar
  24. 24.
    J.L. Hess, C.-H. Hsieh, J.H. Reibenspies, M.Y. Darensbourg, Inorg. Chem. 50, 8541–8552 (2011)CrossRefGoogle Scholar
  25. 25.
    K. Chong, T. Rettiga, L. Torra, N.J. Rotter, Can. J. Chem. 57, 3119–3125 (1979)CrossRefGoogle Scholar
  26. 26.
    J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13, 339–406 (1974)CrossRefGoogle Scholar
  27. 27.
    M.-C. Hung, M.-C. Tsai, W.-F. Liaw, Inorg. Chem. 45, 6041–6047 (2006)CrossRefGoogle Scholar
  28. 28.
    M.-L. Tsai, W.-F. Liaw, Inorg. Chem. 45, 6583–6585 (2006)CrossRefGoogle Scholar
  29. 29.
    Z.J. Tonzetich, L.H. Do, S.J. Lippard, J. Am. Chem. Soc. 131, 7964 (2009)CrossRefGoogle Scholar
  30. 30.
    J.L. Hess, C.-H. Hsieh, S.M. Brothers, M.B. Hall, M.Y. Darensbourg, J. Am. Chem. Soc. 133, 20426–20434 (2012)CrossRefGoogle Scholar
  31. 31.
    APEX2, version 2009.7-0; (Bruker AXS, Inc., Madison, 2007)Google Scholar
  32. 32.
    SAINTPLUS: Program for Reduction of Area Detector Data, version 6.63; (Bruker AXS, Inc., Madison, 2007)Google Scholar
  33. 33.
    G.M. Sheldrick, SADABS: Program for Absorption Correction of Area Detector Frames (Bruker AXS Inc., Madison, 2001)Google Scholar
  34. 34.
    G.M. Sheldrick, SHELXS-97: Program for Crystal Structure Solution; Germany (1997)Google Scholar
  35. 35.
    G.M. Sheldrick, SHELXL-97: Program for Crystal Structure Refinement; Germany (1997)Google Scholar
  36. 36.
    C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Crytsallogr. 39, 453–457 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Applied ChemistryChung Shan Medical UniversityTaichungTaiwan
  2. 2.Department of Medical EducationChung Shan Medical University HospitalTaichungTaiwan
  3. 3.Department of ChemistryTamkang UniversityNew Taipei CityTaiwan

Personalised recommendations