Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 7, pp 4943–4960 | Cite as

Schiff base compound as a corrosion inhibitor for mild steel in 1 M HCl

  • Hong Liu
  • Lin Zhu
  • Qilong Zhao
Article

Abstract

A new Schiff base compound named 4-(4′-benzoylhydrazine)-pyridinecarboxaldehyde hydrazone (BPBH) was synthesized and investigated as a corrosion inhibitor for mild steel in 1 M HCl using weight loss measurements, electrochemical techniques, and adsorption studies. The structure of BPBH was characterized by elemental analysis, infrared spectroscopy (IR), and 1H nuclear magnetic resonance (NMR). The results clearly suggest that the compound acts as a mixed-type inhibitor of acid corrosion of mild steel. The adsorption of BPBH on the metal surface in 1 M HCl was found to agree with the Langmuir isotherm with a standard free energy of adsorption (\(\Delta G_{\text{ads}}^{0}\)) of −31.60 kJ/mol. Scanning electron microscopy images indicate that BPBH exhibits good corrosion inhibition performance for mild steel in 1 M HCl. Quantum chemical calculations were also carried out to verify the inhibition efficiencies obtained from all the experiments.

Keywords

Mild steel Schiff base Electrochemical technique Quantum chemical calculations Acid corrosion 

References

  1. 1.
    J.I. Bregman, Corrosion Inhibitors (MacMillan, New York, 1963)Google Scholar
  2. 2.
    S. Ghareba, S. Omanovic, Corros. Sci. 52, 2104–2113 (2010)CrossRefGoogle Scholar
  3. 3.
    Z. Tao, W. He, S. Wang, S. Zhang, G. Zhou, Corros. Sci. 60, 205–213 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Gopi, K.M. Govindaraju, L. Kavitha, J. Appl. Electrochem. 40, 1349–1356 (2010)CrossRefGoogle Scholar
  5. 5.
    L.J. Li, X.P. Zhang, J.L. Lei, J.X. He, S.T. Zhang, F.S. Pan, Corros. Sci. 63, 82–90 (2012)CrossRefGoogle Scholar
  6. 6.
    A.O. Yüce, G. Kardaş, Corros. Sci. 58, 86–94 (2012)CrossRefGoogle Scholar
  7. 7.
    K.C. Emregül, E. Düzgün, O. Atakol, Corros. Sci. 48, 3243–3260 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Döner, E.A. Sahin, G. Kardas, O. Serindag, Corros. Sci. 66, 278–284 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Bobina, A. Kellenberger, J.P. Millet, C. Muntean, N. Vaszilcsin, Corros. Sci. 69, 389–395 (2013)CrossRefGoogle Scholar
  10. 10.
    I. Danaee, O. Ghasemi, G.R. Rashed, M. RashvandAvei, M.H. Maddahy, J. Mol. Struct. 1035, 247–259 (2013)CrossRefGoogle Scholar
  11. 11.
    A.S. Patel, V.A. Panchal, G.V. Mudaliar, N.K. Shah, J. Saudi, Chem. Soci. 17, 53–59 (2013)Google Scholar
  12. 12.
    S.S. Abd-El-Rehim, M.A.M. Ibrahim, K.F. Khalid, J. Appl. Electrochem. 29, 593–599 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Rengamani, S. Muralidharan, M. AnbuKulamdainathan, I.S. Venkatakrishna, J. Appl. Electrochem. 24, 355–359 (1994)CrossRefGoogle Scholar
  14. 14.
    M. Ajmal, A.S. Mideen, M.A. Quraishi, Corros. Sci. 36, 79–84 (1994)CrossRefGoogle Scholar
  15. 15.
    H. Ju, Z.P. Kai, Y. Li, Corros. Sci. 50, 865–871 (2008)CrossRefGoogle Scholar
  16. 16.
    I. Ahamad, M. Quraishi, Corros. Sci. 51, 2006–2013 (2009)CrossRefGoogle Scholar
  17. 17.
    I. Ahamad, M. Quraishi, Corros. Sci. 52, 651–656 (2010)CrossRefGoogle Scholar
  18. 18.
    S.K. Shukla, M. Quraishi, Corros. Sci. 52, 314–321 (2010)CrossRefGoogle Scholar
  19. 19.
    A.D. Azazl, S. Celen, H. Namlil, O. Turhanl, Proc. Ind. Acad. Sci. 32, 884–888 (2007)Google Scholar
  20. 20.
    H.D. Yin, H. Liu, M. Hong, J. Organomet. Chem. 713, 11–19 (2012)CrossRefGoogle Scholar
  21. 21.
    I. Ahamad, R. Prasad, M.A. Quraishi, Corros. Sci. 52, 933–942 (2010)CrossRefGoogle Scholar
  22. 22.
    I. Ahamad, C. Gupta, R. Prasad, M.A. Quraishi, J. Appl. Electrochem. 40, 2171–2183 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Pelagatti, M. Carcelli, F. Franchi, C. Pelizzi, A. Bacchi, A. Fochi, H.-W. Frühauf, K. Goubitz, K. Vrieze, Eur. J. Inorg. Chem. 3, 463–475 (2000)CrossRefGoogle Scholar
  24. 24.
    H. Meng, Z.F. Xie, J. Hu, F.M. Liu, Chin. J. Org. Chem. 28, 1423–1427 (2008)Google Scholar
  25. 25.
    D.Q. Long, S.S. Chen, D.J. Li, J. JiangXi Normal Univ. Nat. Sci. 30, 372–374 (2006)Google Scholar
  26. 26.
    X.H. Sun, Y. Tao, Y.F. Liu, B. Chen, Acta Chim. Sin. 66, 234–238 (2008) Google Scholar
  27. 27.
    D.Q. Long, S.S. Chen, H. Chen, Chin. J. Synth. Chem. 14, 069–071 (2006)Google Scholar
  28. 28.
    A. Singh, J.N. Avyaya, E.E. Ebenso, M.A. Quraishi, Res. Chem. Intermed. 39, 537–551 (2013)CrossRefGoogle Scholar
  29. 29.
    D.F. Shriver, P.W. Atkins, C.H. Langford, Inorganic Chemistry, 2nd edn. (Oxford University Press, Oxford, 1994)Google Scholar
  30. 30.
    S. Şafak, B. Duran, A. Yurt, G. Türkoğlu, Corros. Sci. 54, 251–259 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Abboud, B. Hammouti, A. Abourriche, A. Bennamara, H. Hannache, Res. Chem. Intermed. 38, 1591–1607 (2012)CrossRefGoogle Scholar
  32. 32.
    W.J. Lorenz, F. Mansfeld, Corros. Sci. 21, 647–672 (1981)CrossRefGoogle Scholar
  33. 33.
    M.A. Quraishi, D. Jamal, Mater. Chem. Phys. 68, 283–287 (2001)CrossRefGoogle Scholar
  34. 34.
    E.A. Noor, Int. J. Electrochem. Sci. 2, 996–1017 (2007)Google Scholar
  35. 35.
    M. Bhupendra, S.J. Mistry, Res. Chem. Intermed. 39, 1049–1068 (2013)CrossRefGoogle Scholar
  36. 36.
    S. John, K.M. Ali, A. Joseph, Bull. Mater. Sci. 34, 1245–1256 (2011)CrossRefGoogle Scholar
  37. 37.
    I. Lukovits, E. Kalman, F. Zucchi, Corrosion 57, 3–8 (2001)CrossRefGoogle Scholar
  38. 38.
    I. Ahamada, R. Prasadb, M.A. Quraishia, Mater. Chem. Phys. 124, 1155–1165 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Fang, J. Li, J. Mol. Struct. Theochem. 593, 179–185 (2002)CrossRefGoogle Scholar
  40. 40.
    G. Gece, Corros. Sci. 50, 2981–2992 (2008)CrossRefGoogle Scholar
  41. 41.
    R.M. Issa, M.K. Awad, F.M. Atlam, Appl. Surf. Sci. 255, 2433–2441 (2008)CrossRefGoogle Scholar
  42. 42.
    B.D. Mert, M.E. Mert, G. Kardas, B. Yazici, Corros. Sci. 53, 4265–4272 (2011)CrossRefGoogle Scholar
  43. 43.
    N. Missoum, A. Guendouz, N. Boussalah, B. Hammouti, A. Chetouani, M. Taleb, A. Aouniti, S. Ghalem, Res. Chem. Intermed. 39, 3441–3461 (2013)CrossRefGoogle Scholar
  44. 44.
    S. Martinez, Mater. Chem. Phys. 77, 97–102 (2002)CrossRefGoogle Scholar
  45. 45.
    L.F. Mar, O.O. Xometl, M.A.D. Aguilar, E.A. Flores, P.A. Lozada, F.J. Cruz, Corros. Sci. 61, 171–184 (2012)CrossRefGoogle Scholar
  46. 46.
    J.C. Slater, Introduction to Chemical Physics (Dover, New York, 1970)Google Scholar
  47. 47.
    M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 99, 4899–4907 (1977)CrossRefGoogle Scholar
  48. 48.
    I. Ahamad, R. Prasad, E.E. Ebenso, M.A. Quraishi, Int. J. Electrochem. Sci. 7, 3436–3452 (2012)Google Scholar
  49. 49.
    W. Li, Q. He, C. Pei, B. Hou, Electrochim. Acta 52, 6386–6394 (2007)CrossRefGoogle Scholar
  50. 50.
    M.A. Quraishi, M.Z.A. Rafiquee, S. Khan, N. Saxena, J. Appl. Electrochem. 37, 1153 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.State Key Laboratory of Oil and Gas Reservoir Geology and ExplorationSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations