Research on Chemical Intermediates

, Volume 41, Issue 7, pp 4151–4167 | Cite as

Photocatalytic degradation of dibenzothiophene using La/PEG-modified TiO2 under visible light irradiation

  • Sina Moradi
  • Manouchehr Vossoughi
  • Mehrzad Feilizadeh
  • S. Mohammad Esmaeil Zakeri
  • Mohammad Moein Mohammadi
  • Davood Rashtchian
  • Amin Yoosefi Booshehri


While the photocatalytic degradation of various organic compounds under UV light irradiation has been widely investigated, visible-light-induced photocatalytic degradation of low levels of pollutants such as dibenzothiophene (DBT) is occasionally reported. In the present work, lanthanide/polyethylene glycol-modified TiO2 (La/PEG/TiO2) has been successfully synthesized by a sol–gel method. The photocatalyst was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–Vis diffusive reflectance spectroscopy, and energy dispersive X-ray analysis. Moreover, the photocatalytic degradation of DBT under visible light irradiation is investigated for the first time using the newly synthesized photocatalyst. The effects of important operational parameters such as initial DBT concentration, catalyst loading, pH, and amount of H2O2 on the degradation efficiency were studied. Kinetics parameters of the photocatalytic oxidation of DBT were also calculated. The results show that DBT decomposition occurs according to the Langmuir–Hinshelwood mechanism. The degradation products were analyzed by the GC–MS technique.


Photocatalytic degradation Dibenzothiophene La/PEG/TiO2 Visible light illumination Langmuir–Hinshelwood 



The authors acknowledge the Biochemical and Bioenvironmental Engineering Research Center (BBRC) at Sharif University of Technology for financial support.


  1. 1.
    D.J. Monticello, Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 11(6), 540–546 (2000)CrossRefGoogle Scholar
  2. 2.
    U.S. Environmental Protection Agency, Fuel sulfur effects on exhaust emissions. Accessed May 2013
  3. 3.
    U.S. Environmental Protection Agency, from CoAP, New motor vehicles, and H-DEaVS, Requirements HDFSC. Accessed May 2013
  4. 4.
    F.G. Petzold, J. Jasinski, E.L. Clark, J.H. Kim, J. Absher, H. Toufar, M.K. Sunkara, Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts. Catal. Today 198(1), 219–227 (2012). doi: 10.1016/j.cattod.2012.05.030 CrossRefGoogle Scholar
  5. 5.
    L. Wang, B. Sun, F.H. Yang, R.T. Yang, Effects of aromatics on desulfurization of liquid fuel by π-complexation and carbon adsorbents. Chem. Eng. Sci. 73, 208–217 (2012). doi: 10.1016/j.ces.2012.01.056 CrossRefGoogle Scholar
  6. 6.
    J. Zhang, W. Zhu, H. Li, W. Jiang, Y. Jiang, W. Huang, Y. Yan, Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids. Green Chem. 11(11), 1801–1807 (2009). doi: 10.1039/B914130H CrossRefGoogle Scholar
  7. 7.
    M.C. Capel-Sanchez, J.M. Campos-Martin, J.L.G. Fierro, Removal of refractory organosulfur compounds via oxidation with hydrogen peroxide on amorphous Ti/SiO2 catalysts. Energy Environ. Sci. 3(3), 328–333 (2010). doi: 10.1039/B923795J CrossRefGoogle Scholar
  8. 8.
    A.V. Anisimov, A.V. Tarakanova, Oxidative desulfurization of hydrocarbon raw materials. Russ. J. Gen. Chem. 79(6), 1264–1273 (2009). doi: 10.1134/S1070363209060437 CrossRefGoogle Scholar
  9. 9.
    J.M. Campos-Martin, M.C. Capel-Sanchez, P. Perez-Presas, J.L.G. Fierro, Oxidative processes of desulfurization of liquid fuels. J. Chem. Technol. Biotechnol. 85(7), 879–890 (2010). doi: 10.1002/jctb.2371 CrossRefGoogle Scholar
  10. 10.
    F-t Li, R-h Liu, W. Jin-hua, D-s Zhao, Z-m Sun, Y. Liu, Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid. Green Chem. 11(6), 883–888 (2009). doi: 10.1039/B815575E CrossRefGoogle Scholar
  11. 11.
    Y. Shiraishi, T. Hirai, I. Komasawa, TiO2-mediated photocatalytic desulfurization process for light oils using an organic two-phase system. J. Chem. Eng. Jpn. 35(5), 489–492 (2002)CrossRefGoogle Scholar
  12. 12.
    R. Vargas, O. Núñez, The photocatalytic oxidation of dibenzothiophene (DBT). J. Mol. Catal. A 294(1–2), 74–81 (2008). doi: 10.1016/j.molcata.2008.08.001 CrossRefGoogle Scholar
  13. 13.
    R. Vargas, O. Núñez, Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Sol. Energy 84(2), 345–351 (2010). doi: 10.1016/j.solener.2009.12.005 CrossRefGoogle Scholar
  14. 14.
    A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1(1), 1–21 (2000). doi: 10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  15. 15.
    M. Anpo, Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–Vis light irradiation: approaches in realizing high efficiency in the use of visible light. Bull. Chem. Soc. Jpn. 77(8), 1427–1442 (2004)CrossRefGoogle Scholar
  16. 16.
    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). doi: 10.1021/cr00035a013 CrossRefGoogle Scholar
  17. 17.
    I. Salem, Recent studies on the catalytic activity of titanium, zirconium, and hafnium oxides. Catal. Rev. 45(2), 205–296 (2003). doi: 10.1081/CR-120015740 CrossRefGoogle Scholar
  18. 18.
    A. Selvaraj, S. Sivakumar, A.K. Ramasamy, V. Balasubramanian, Photocatalytic degradation of triazine dyes over N-doped TiO2 in solar radiation. Res. Chem. Intermed. 39(6), 2287–2302 (2013). doi: 10.1007/s11164-012-0756-x CrossRefGoogle Scholar
  19. 19.
    S. Matsuzawa, J. Tanaka, S. Sato, T. Ibusuki, Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation. J. Photochem. Photobiol. A 149(1–3), 183–189 (2002). doi: 10.1016/S1010-6030(02)00004-7 CrossRefGoogle Scholar
  20. 20.
    J. Robertson, T.J. Bandosz, Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst. J. Colloid Interface Sci. 299(1), 125–135 (2006). doi: 10.1016/j.jcis.2006.02.011 CrossRefGoogle Scholar
  21. 21.
    D. Zhao, J. Zhang, J. Wang, W. Liang, H. Li, Photocatalytic oxidation desulfurization of diesel oil using Ti-containing Zeolite. Pet. Sci. Technol. 27(1), 1–11 (2009). doi: 10.1080/10916460802108314 CrossRefGoogle Scholar
  22. 22.
    B. Ohtani, Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem. Lett. 37(3), 217–229 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Sano, N. Negishi, K. Koike, K. Takeuchi, S. Matsuzawa, Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand. J. Mater. Chem. 14(3), 380–384 (2004). doi: 10.1039/B311444A CrossRefGoogle Scholar
  24. 24.
    Y.-B. Tang, C.-S. Lee, J. Xu, Z.-T. Liu, Z.-H. Chen, Z. He, Y.-L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.-M. Cheng, W.-J. Zhang, I. Bello, S.-T. Lee, Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4(6), 3482–3488 (2010). doi: 10.1021/nn100449w CrossRefGoogle Scholar
  25. 25.
    H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.-T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49(26), 4430–4434 (2010). doi: 10.1002/anie.200906154 CrossRefGoogle Scholar
  26. 26.
    H. Zuo, J. Sun, K. Deng, R. Su, F. Wei, D. Wang, Preparation and characterization of Bi3+-TiO2 and its photocatalytic activity. Chem. Eng. Technol. 30(5), 577–582 (2007). doi: 10.1002/ceat.200700022 CrossRefGoogle Scholar
  27. 27.
    J. Ma, Y. Wei, W.-X. Liu, W.-B. Cao, Preparation of nanocrystalline Fe-doped TiO2 powders as a visible-light-responsive photocatalyst. Res. Chem. Intermed. 35(3), 329–336 (2009). doi: 10.1007/s11164-009-0027-7 CrossRefGoogle Scholar
  28. 28.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). doi: 10.1126/science.1061051 CrossRefGoogle Scholar
  29. 29.
    P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy, S.J. Hinder, Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. J Phys Chem C 112(20), 7644–7652 (2008). doi: 10.1021/jp0774847 CrossRefGoogle Scholar
  30. 30.
    S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42(40), 4908–4911 (2003). doi: 10.1002/anie.200351577 CrossRefGoogle Scholar
  31. 31.
    M. Adams, N. Skillen, C. McCullagh, P.K.J. Robertson, Development of a doped titania immobilised thin film multi tubular photoreactor. Appl. Catal. B 130–131, 99–105 (2013). doi: 10.1016/j.apcatb.2012.10.008 CrossRefGoogle Scholar
  32. 32.
    C.-H. Zhou, X.-Z. Zhao, B.-C. Yang, D. Zhang, Z.-Y. Li, K.-C. Zhou, Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells. J. Colloid Interface Sci. 374(1), 9–17 (2012). doi: 10.1016/j.jcis.2011.12.006 CrossRefGoogle Scholar
  33. 33.
    L.C.-K. Liau, H. Chang, T.C.-K. Yang, C.-L. Huang, Effect of poly(ethylene glycol) additives on the photocatalytic activity of TiO2 films prepared by sol–gel processing and low temperature treatments. J. Chin. Inst. Chem. Eng, 39(3), 237–242 (2008). doi: 10.1016/j.jcice.2007.12.014 CrossRefGoogle Scholar
  34. 34.
    H. Chang, E.-H. Jo, H.D. Jang, T.-O. Kim, Synthesis of PEG-modified TiO2–InVO4 nanoparticles via combustion method and photocatalytic degradation of methylene blue. Mater. Lett. 92, 202–205 (2013). doi: 10.1016/j.matlet.2012.11.006 CrossRefGoogle Scholar
  35. 35.
    F. Deng, Y. Li, X. Luo, L. Yang, X. Tu, Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloids Surf. A. 183–189 (2012). doi: 10.1016/j.colsurfa.2011.12.029.
  36. 36.
    D. Wang, Y. Duan, Q. Luo, X. Li, J. An, L. Bao, L. Shi, Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. J. Mater. Chem. 22, 4847–4854 (2012). doi: 10.1039/C2JM14628B CrossRefGoogle Scholar
  37. 37.
    S.X. Luo, F.M. Wang, Z.S. Shi, F. Xin, Preparation and photocatalytic activity of Zr doped TiO2. Mater. Res. Innov. 13(1), 64–69 (2009). doi: 10.1179/143307509X402219 CrossRefGoogle Scholar
  38. 38.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Mater. Sci. Eng. B 117(1), 67–75 (2005). doi: 10.1016/j.mseb.2004.10.018 CrossRefGoogle Scholar
  39. 39.
    J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J.C. Yu, W.-K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 107(50), 13871–13879 (2003). doi: 10.1021/jp036158y CrossRefGoogle Scholar
  40. 40.
    A. Hinchliffe, N. Trinajstic, Calculation of proton coupling constants for dibenzothiophene radical anion. Theor. Chim. Acta (Berl.) 10, 458–460 (1968). doi: 10.1007/BF00528777 CrossRefGoogle Scholar
  41. 41.
    N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A 162(2–3), 317–322 (2004). doi: 10.1016/S1010-6030(03)00378-2 CrossRefGoogle Scholar
  42. 42.
    M. Pérez, F. Torrades, J.A. García-Hortal, X. Domènech, J. Peral, Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Appl. Catal. B 36(1), 63–74 (2002). doi: 10.1016/S0926-3373(01)00281-8 CrossRefGoogle Scholar
  43. 43.
    C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122(1), 178–192 (1990). doi: 10.1016/0021-9517(90)90269-P CrossRefGoogle Scholar
  44. 44.
    J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53(1), 115–129 (1999). doi: 10.1016/S0920-5861(99)00107-8 CrossRefGoogle Scholar
  45. 45.
    W. Boyles, The Science of Chemical Oxygen Demand, Technical Information Series, Booklet No. 9, (Hach, Loveland, 1997)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sina Moradi
    • 1
  • Manouchehr Vossoughi
    • 1
    • 2
  • Mehrzad Feilizadeh
    • 1
  • S. Mohammad Esmaeil Zakeri
    • 3
  • Mohammad Moein Mohammadi
    • 1
  • Davood Rashtchian
    • 1
  • Amin Yoosefi Booshehri
    • 4
    • 5
  1. 1.Department of Chemical and Petroleum EngineeringSharif University of TechnologyTehranIran
  2. 2.Institute for Nano-science and Nano-technologySharif University of TechnologyTehranIran
  3. 3.Department of EngineeringUniversity of KashanKashanIran
  4. 4.School of Chemical & Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  5. 5.Singapore Membrane Technology CentreNanyang Environmental and Water Research InstituteSingaporeSingapore

Personalised recommendations