Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 6, pp 3929–3936 | Cite as

Aerobic oxidation of benzyl alcohols using a novel combination of N-hydroxyphthalimide (NHPI) with HNO3 and CuBr2

  • Bo Chen
  • Jun Li
  • Gang Yang
  • Shuang Gao
Article

Abstract

A new catalytic system for oxidation of alcohols with oxygen catalyzed by N-hydroxyphthalimide (NHPI) combined with HNO3 and CuBr2 has been developed. This system can effectively catalyze oxidation of primary benzylic alcohols to corresponding aldehydes with high selectivities (up to 100 %). A mechanism for the oxidation of alcohols catalyzed by NHPI/HNO3/CuBr2 is proposed.

Keywords

Oxidation Alcohol NHPI Copper HNO3 Oxygen 

References

  1. 1.
    R.A. Sheldon, J. Kochi, Metal catalyzed oxidations of organic compounds (Academic, New York, 1981)Google Scholar
  2. 2.
    M. Hudlick, Oxidation in organic chemistry (ACS Press, Washington DC, 1990)Google Scholar
  3. 3.
    R.A. Sheldon, I.C.W.E. Arends, A. Dijksman, Catal. Today 57, 157–166 (2000)Google Scholar
  4. 4.
    S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan, D.H.B. Ripin, Chem. Rev. 106, 2943–2989 (2006)Google Scholar
  5. 5.
    J.R. Holum, J. Org. Chem. 26, 4814–4816 (1961)Google Scholar
  6. 6.
    J.C. Collins, W.W. Hess, F.J. Frank, Tetrahedron Lett. 9, 3363–3366 (1968)Google Scholar
  7. 7.
    E.J. Corey, J.W. Suggs, Tetrahedron Lett. 31, 2647–2650 (1975)Google Scholar
  8. 8.
    R.J. Highet, W.C. Wildman, J. Am. Soc. Chem. 77, 4399–4401 (1955)Google Scholar
  9. 9.
    D.G. Lee, U.A. Spitzer, J. Org. Chem. 35, 3589–3590 (1970)Google Scholar
  10. 10.
    W.P. Griffith, Chem. Soc. Rev. 21, 179–185 (1992)Google Scholar
  11. 11.
    F.M. Menger, C. Lee, J. Org. Chem. 44, 3446–3448 (1979)Google Scholar
  12. 12.
    B.M. Trost, Science 254, 1471–1477 (1991)CrossRefGoogle Scholar
  13. 13.
    B.M. Trost, Angew. Chem. Int. Ed. 34, 259–281 (1995)Google Scholar
  14. 14.
    T. Mallat, A. Baiker, Chem. Rev. 104, 3037–3058 (2004)Google Scholar
  15. 15.
    M.S. Sigman, D.R. Jensen, Acc. Chem. Res. 39(3), 221–229 (2006)Google Scholar
  16. 16.
    C. Parmeggiani, F. Cardona, Green Chem. 14, 547–564 (2012)Google Scholar
  17. 17.
    S.S. Stahl, Angew. Chem. Int. Ed. 43(26), 3400–3420 (2004)Google Scholar
  18. 18.
    M.J. Schultz, M.S. Sigman, Tetrahedron 62, 8227–8241 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Recupero, C. Punta, Chem. Rev. 107, 3800–3842 (2007)Google Scholar
  20. 20.
    S. Coseri, Catal. Rev. 51, 218–292 (2009)Google Scholar
  21. 21.
    T. Iwahama, S. Sakaguchi, Y. Nishiyama, Y. Ishii, Tetrahedron Lett. 36, 6923–6926 (1995)Google Scholar
  22. 22.
    T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi, Y. Ishii, J. Org. Chem. 65, 6502–6507 (2000)Google Scholar
  23. 23.
    F. Minisci, C. Punta, F. Recupero, F. Fontana, G.F. Pedulli, Chem. Commun. 688–689 (2002)Google Scholar
  24. 24.
    P.J. Figiel, J.M. Sobczak, New J. Chem. 31, 1668–1673 (2007)Google Scholar
  25. 25.
    P.J. Figiel, J.M. Sobczak, J.J. Ziolkowski, Chem. Commun. 244–245 (2004)Google Scholar
  26. 26.
    P.J. Figiel, J.M. Sobczak, J. Catal. 263(1), 167–172 (2009)Google Scholar
  27. 27.
    S.J. Zhang, G.D. Zhao, S. Gao, Z.W. Xi, J. Xu, J. Mol. Catal. A-Chem. 289(1–2), 22–27 (2008)Google Scholar
  28. 28.
    S.J. Zhang, S. Gao, Z.W. Xi, J. Xu, Catal. Commun. 8, 531–534 (2007)Google Scholar
  29. 29.
    G. Yang, L.Y. Wang, J. Li, Y. Zhang, X.L. Dong, Y. Lv, S. Gao, Res. Chem. Intermed. 38(3), 775–783 (2012)Google Scholar
  30. 30.
    L.Y. Wang, J. Li, H. Yang, Y. Lv, S. Gao, J. Org. Chem. 77, 790–794 (2012)Google Scholar
  31. 31.
    L.Y. Wang, J. Li, Y. Lv, G.D. Zhao, S. Gao, Appl. Organomet. Chem. 26(1), 37–43 (2012)Google Scholar
  32. 32.
    L.Y. Wang, J. Li, Y. Lv, H.Y. Zhang, S. Gao, J. Organomet. Chem. 696(20), 3257–3263 (2011)Google Scholar
  33. 33.
    L.Y. Wang, J. Li, X. Zhao, Y. Lv, H.Y. Zhang, S. Gao, Tetrahedron 69, 6041–6045 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Nishiwaki, S. Sakaguchi, Y. Ishii, J. Org. Chem. 67(16), 5663–5668 (2002)Google Scholar
  35. 35.
    F. Minisci, F. Recupero, C. Gambarotti, C. Punta, R. Paganelli, Tetrahedron Lett. 44(36), 6919–6922 (2003)Google Scholar
  36. 36.
    S. Isozaki, Y. Nishiwaki, S. Sakaguchi, Y. Ishii, Chem. Commun. 1352–1353 (2001)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  2. 2.Dalian National Laboratory for Clean Energy, DNLDalianPeople’s Republic of China
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations