Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 6, pp 3461–3469 | Cite as

Efficient copper(I)-catalyzed, microwave-assisted, one-pot synthesis of 3,4-diaryl isoquinolines

  • Zhang Hu
  • Li-Li Ou
  • Si-Dong Li
  • Lei Yang
Article
  • 145 Downloads

Abstract

An efficient copper-catalyzed, microwave-assisted, one-pot reaction has been developed for synthesis of 3,4-diaryl isoquinolines. The reaction was performed in two steps via a CuI/2,2′-biimidazole-catalyzed tandem process from N-tert-butyl-o-iodobenzaldimine and a terminal aryl alkyne, followed by addition of an aryl iodide. A variety of 3,4-diaryl isoquinolines have been obtained in moderate to good yields.

Keywords

Isoquinolines Copper-catalyzed One-pot synthesis Microwave irradiation 

Notes

Acknowledgments

This work was supported by the Program for Excellent Talents in Guangdong Ocean University (Grant No. 0912118).

References

  1. 1.
    R.S. Gupta, V.P. Dixit, M.P. Dobhal, Fitoterapia 61, 67 (1990)Google Scholar
  2. 2.
    M. Zheng, Y. Yang, M. Zhao, X. Zhang, J. Wu, G. Chen, L. Peng, Y. Wang, S. Peng, Eur. J. Med. Chem. 46, 1672 (2011)CrossRefGoogle Scholar
  3. 3.
    J.F. Miller, K.S. Gudmundsson, L.D. Richardson, S. Jenkinson, A. Spaltenstein, M. Thomson, P. Wheelan, Bioorg. Med. Chem. Lett. 20, 3026 (2010)CrossRefGoogle Scholar
  4. 4.
    M. He, D. Yuan, W. Lin, R. Pang, X. Yu, M. Yang, Bioorg. Med. Chem. Lett. 15, 3978 (2005)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, W. Ye, S. Zhao, C.T. Che, Phytochemistry 65, 929 (2004)CrossRefGoogle Scholar
  6. 6.
    D.S. Bae, Y.H. Kim, C.H. Pan, C.W. Nho, J. Samdan, J. Yansan, J.K. Lee, BMB. Rep. 45, 108 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Yang, J. Zhang, Y. Wu, Tetrahedron 67, 2969 (2011)CrossRefGoogle Scholar
  8. 8.
    K.R. Roesch, H.M. Zhang, R.C. Larock, J. Org. Chem. 66, 8042 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Konno, J. Chae, T. Miyabe, T. Ishihara, J. Org. Chem. 70, 10172 (2005)CrossRefGoogle Scholar
  10. 10.
    G. Dai, R.C. Larock, Org. Lett. 3, 4035 (2001)CrossRefGoogle Scholar
  11. 11.
    R.P. Korivi, C.H. Cheng, Org. Lett. 7, 5179 (2005)CrossRefGoogle Scholar
  12. 12.
    C.C. Liu, R.P. Korivi, C.H. Cheng, Chem. Eur. J. 14, 9503 (2008)CrossRefGoogle Scholar
  13. 13.
    X. Yu, J. Wu, J. Comb. Chem. 11, 895 (2009)CrossRefGoogle Scholar
  14. 14.
    C.O. Kappe, Chem. Soc. Rev. 37, 1127 (2008)CrossRefGoogle Scholar
  15. 15.
    V. Polshettiwar, R.S. Varma, Chem. Soc. Rev. 37, 1546 (2008)CrossRefGoogle Scholar
  16. 16.
    D. Dallinger, C.O. Kappe, Chem. Rev. 107, 2563 (2007)CrossRefGoogle Scholar
  17. 17.
    Z. Hu, S.D. Li, P.Z. Hong, Arkivoc 2010, 171 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Hu, W. Ye, H. Zou, Y. Yu, Synth. Commun. 40, 222 (2010)CrossRefGoogle Scholar
  19. 19.
    Z. Hu, S.D. Li, P.Z. Hong, Z. Wu, Arkivoc 2011, 147 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceGuangdong Ocean UniversityZhanjiangChina
  2. 2.College of Pharmaceutical ScienceZhejiang UniversityHangzhouChina

Personalised recommendations