Research on Chemical Intermediates

, Volume 41, Issue 5, pp 3135–3146 | Cite as

An electrochemical sensor based on titanium oxide–carbon nanotubes nanocomposite for simultaneous determination of hydroquinone and catechol



A novel TiO2/multi-walled carbon nanotubes (MWCNTs) composite film-modified electrode was fabricated to devolop an electrochemical sensor for the simultaneous determination of hydroquinone (HQ) and catechol (CC). The prepared electrode not only separated the peaks of HQ and CC on the cyclic voltammogram with oxidation potential difference of 116 mV but also lowered the overpotential significantly and increased the reversible process and the peak currents of HQ and CC. In 0.1 M PBS (pH = 7.0). The oxidation peak current was linearly proportional to the concentration of CC and HQ in two broad linear ranges with the detection limit of 0.8 μM. The present electrochemical sensor for the simultaneous determination of CC and HQ showed high sensitivity and low detection limit.


Electrochemical sensor Carbon nanotubes Titanium oxide Hydroquinone Catechol Simultaneous determination 



This work was financially supported by the National Natural Science Foundation of China (No. 21275116), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20126101120023), the Natural Science Foundation of Shaanxi Province of China (No. 2013JK0673), the Scientific Research Foundation of Educational Department of Shaanxi Province of China (No. 2013JQ2015) and Doctoral Scientific Research Foundation of Xi’an Shiyou University (No. YS29031618).


  1. 1.
    J. Wang, J.N. Park, X.Y. Wei, C.W. Lee, Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Naβzeolite. Chem. Commun.(Camb) 5, 628–629 (2003)CrossRefGoogle Scholar
  2. 2.
    E.C. Figueiredo, C.R.T. Tarley, L.T. Kubota, S. Rath, M.A.Z. Arruda, On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol. Microchem. J. 85, 290–296 (2007)CrossRefGoogle Scholar
  3. 3.
    B.G.T. Corominas, M.C. Icardo, L.L. Zamora, J.V.G. Mateo, J.M. Calatayud, A tandem-flow assembly for the chemiluminometric determination of hydroquinone. Talanta 64, 618–625 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Nagaraja, R.A. Vasantha, K.R. Sunitha, A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations. J. Pharm. Biomed. Anal. 25, 417–424 (2001)CrossRefGoogle Scholar
  5. 5.
    H. Cui, C. He, G.J. Zhao, Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J. Chromatogr. A 855, 171–179 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Asan, I. Isildak, Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J. Chromatogr. A 988, 145–149 (2003)CrossRefGoogle Scholar
  7. 7.
    M.F. Pistonesi, M.S.D. Nezio, M.E. Centurión, M.E. Palomeque, A.G. Lista, B.S.F. Band, Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares. Talanta 69, 1265–1268 (2006)CrossRefGoogle Scholar
  8. 8.
    B. Pranaityt, A. Padarauskas, A. Dikčius, R. Ragauskas, Rapid capillary electrophoretic determination of glutaraldehyde in photographic developers using a cationic polymer coating. Anal. Chim. Acta 507, 185–190 (2004)CrossRefGoogle Scholar
  9. 9.
    J.A. Garcia-Mesa, R. Mateos, Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system. J. Agric. Food Chem. 55, 3863–3868 (2007)CrossRefGoogle Scholar
  10. 10.
    J.J. Yu, W. Du, F.Q. Zhao, B.Z. Zeng, High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes. Electrochim. Acta 54, 984–988 (2009)CrossRefGoogle Scholar
  11. 11.
    M.A. Ghanem, Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochem. Commun. 9, 2501–2506 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Korkut, B. Keskinler, E. Erhan, An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76, 1147–1152 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Cui, C. He, G. Zhao, Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J. Chromatogr. A 855, 171–179 (1999)CrossRefGoogle Scholar
  14. 14.
    Y. Lei, G. Zhao, M. Liu, X. Xiao, Y. Tang, D. Li, Simple and feasible simultaneous determination of three phenolic pollutants on boron-doped diamond film electrode. Electroanalysis 19, 1933–1938 (2007)CrossRefGoogle Scholar
  15. 15.
    W. Liu, X. Wang, Q. Wu, Y.J. Ding, A facile and fast electrochemical method for the simultaneous determination of o-dihydroxybenzene and p-dihydroxybenzene using a surfactant. J. Anal. Chem. 64, 54–58 (2009)CrossRefGoogle Scholar
  16. 16.
    C. Zhao, J. Song, J. Zhang, Determination of total phenols in environmental wastewater by flow-injection analysis with a biamperometric detector. Anal. Bioanal. Chem. 374, 498–504 (2002)CrossRefGoogle Scholar
  17. 17.
    A. Gutes, F. Cespedes, S. Alegret, M. Valle, Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens. Bioelectron. 20, 1668–1673 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Carvalho, C. Mello, L. Kubota, Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool. Anal. Chim. Acta 420, 109–121 (2000)CrossRefGoogle Scholar
  19. 19.
    H. Qi, C. Zhang, Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17, 832–838 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  21. 21.
    C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010)CrossRefGoogle Scholar
  22. 22.
    K.B. Wu, J.J. Fei, S.S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 318, 100–106 (2003)CrossRefGoogle Scholar
  23. 23.
    M. Noroozifar, M. Khorasani-Motlagh, R. Akbari, M.B. Parizi, Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosens. Bioelectron. 28, 56–63 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, Simultaneous determination of uric acid, xanthine and hypoxanthine at poly (pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloids Surf. B Biointerfaces 88, 614–621 (2011)CrossRefGoogle Scholar
  25. 25.
    Z. Wang, G. Luo, S. Xiao, G. Wang, Electrocatalitic behavior of nitrophenol isomers at α-cyclodextrin incorporated carbon nanotubes-coated electrode. Chem. J. Chin. Univ. 24, 811–813 (2003)Google Scholar
  26. 26.
    D. Zhang, Y. Peng, H. Qi, Q. Gao, C. Zhang, Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sens. Actuators B. Chem. 136, 113–121 (2009)CrossRefGoogle Scholar
  27. 27.
    F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, C. Wang, Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal. Chim. Acta 724, 40–46 (2012)CrossRefGoogle Scholar
  28. 28.
    X. Lv, G. Zhang, W. Fu, Highly efficient hydrogen evolution using TiO2/graphene composite photocatalysts. Procedia Eng. 27, 570–576 (2012)CrossRefGoogle Scholar
  29. 29.
    S.J. Bao, C.M. Li, J.F. Zang, X.Q. Cui, Y. Qiao, J. Guo, New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater. 18, 591–599 (2008)CrossRefGoogle Scholar
  30. 30.
    H. Lin, X. Ji, Q. Chen, Y. Zhou, C.E. Banks, K. Wu, Mesoporous-TiO2 nanoparticles based carbon paste electrodes exhibit enhanced electrochemical sensitivity for phenols. Electrochem. Commun. 11, 1990–1995 (2009)CrossRefGoogle Scholar
  31. 31.
    M.H. Mashhadizadeh, E. Afshar, Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta 87, 816–823 (2013)CrossRefGoogle Scholar
  32. 32.
    L.C. Jiang, W.D. Zhang, Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis 21, 988–993 (2009)CrossRefGoogle Scholar
  33. 33.
    Y.P. Ding, W.L. Liu, Q.S. Wu, X.G. Wang, Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J. Electroanal. Chem. 575, 275–280 (2005)CrossRefGoogle Scholar
  34. 34.
    E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)CrossRefGoogle Scholar
  35. 35.
    L. Wang, Y. Zhang, Y. Du, D. Lu, Y. Zhang, C. Wang, Simultaneous determination of catechol and hydroquinon based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode. J. Solid State Electrochem. 16, 1323–1331 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Li, F. Ni, Y. Wang, S. Xu, D. Zhang, S. Chen, L. Wang, Sensitive and facile determination of catechol and hydroquinone simultaneously under coexistence of resorcinol with a Zn/Al layered double hydroxide film modified glassy carbon electrode. Electroanalysis 21, 1521–1526 (2009)CrossRefGoogle Scholar
  37. 37.
    D.M. Zhao, X.H. Zhang, L.J. Feng, J. Li, S.F. Wang, Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids Surf. B Biointerfaces 74, 317–321 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Analytical Science, Shaanxi Provincial Key Labortary of Electroanalytical ChemistryNorthwest UniversityXi’anChina
  2. 2.College of Chemistry and Chemical EngineeringXi’an Shiyou UniversityXi’anChina

Personalised recommendations