Research on Chemical Intermediates

, Volume 41, Issue 2, pp 1213–1225 | Cite as

Potential effluent oil mills and antibacterial activity polyphenols against some pathogenic strains

  • Majdouline Larif
  • Mohammed Ouhssine
  • Abdelmajid Soulaymani
  • Azzedine Elmidaoui


The recovery of polyphenols from olive mill wastewaters (OMWs) provides the double opportunity to obtain high-added value biomolecules and to reduce the phytotoxicity of the effluent. The purpose of this study is to gain information about the hygienic quality of the raw material by performing a microbiological analysis of olive mill wastewater, from an extraction system of three phases. The determination of total coliforms,fecal coliforms,aecal streptococci, and another group of microorganisms have been explored, namely yeasts, molds and total aerobic mesophilic flora. We examined the results of the confrontation of olive mill wastewater polyphenols with certain strains known for their pathogenicity, and the minimum concentrations inhibiting bacteria and the minimal bactericidal concentration (MBC) were determined by the dilution method. Polyphenols are particularly the delipidated fraction of OMW extracts according to liquid–liquid phase. The overall yield is 1.367 ± 0.108 %. The quantitative estimation of total polyphenols was assessed by the colorimetric reagent Folin–Ciocalteu, gallic acid and tyrosol, tannic acid and total flavonoids catechin (the method using aluminum trichloride). The results of microbiological analysis confirmed that there is no fecal contamination. For the in vitro bioassay, polyphenols showed a variable antimicrobial activity against six bacteria: Escherichia coli, Proteus sp., Pseudomonas aeruginosa, Enterroccus feculis, Staphylococcus aureus, and Klebsiella pneumoniae. This variability depends essentially on the microorganism tested and the nature of the product tested. Indeed, we found complete inhibition of the growth of Proteus sp. and E. fecalis by the sinks method. Some microorganisms were sensitive to phenols with MBC values between 1/50 and 1/25.


Olive mill wastewater Polyphenols Hygienic quality Antimicrobial agents 


  1. 1.
    C.H. Lu, W.N. Chang, Y.C. Chuang, H.W. Chang, The prognostic factors of adult gram-negative bacillary meningitis. J. Hosp. Infect. 40, 27–33 (1998)CrossRefGoogle Scholar
  2. 2.
    S.C. Chang, W.C. Hsieh, C. Liu, High prevalence of antibiotic resistance of common pathogenic bacteria in Taiwan. The Antibiotics Resistance Study Group of the Infectious Disease Society of the Republic of China. Diagn. Microbiol. Infect. Dis. 36, 107–112 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Ho, L.C. McDonald, T.L. Lauderdale, L.L. Yeh, P.C. Chen, Y.R. Shiau, Surveillance of antibiotic resistance in Taiwan, 1998. J. Microbiol. Immunol. Infect. 32, 239–249 (1999)Google Scholar
  4. 4.
    J. Carlet, P. Collignon, D. Goldmann, H. Goossens, I.C. Gyssens, S. Harbarth et al., Society’s failure to protect a precious resource: antibiotics. Lancet 378, 369–371 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Carlet, J.L. Mainardi, Antibacterial agents: back to the future? Can we live with only colistine, cotrimoxazole, and fosfomycin? Clin. Microbiol. Infect. 18, 1–3 (2012)CrossRefGoogle Scholar
  6. 6.
    A. De Leonardis, A. Aretini, G. Alfano, V. Macciola, G. Ranalli, Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea europaea L.) and evaluation of its antioxidant properties and bioactivity. Eur. Food Res. Technol. 226, 653–659 (2008)CrossRefGoogle Scholar
  7. 7.
    I.S. Arvanitoyannis, A. Kassaveti, Fish industry waste: treatments, environmental impacts, current and potential use. Int. J. Food Sci. Technol. 43, 726–745 (2008)CrossRefGoogle Scholar
  8. 8.
    A. El-Abbassi, A. Hafidi, M.C. Garcia-Payo, M. Khayet, Concentration of olive mill wastewater by membrane distillation for polyphenols recovery. Desalination 245, 670–674 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Garcia-Castello, A. Cassano, A. Criscuoli, C. Conidi, E. Drioli, Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883–3892 (2010)CrossRefGoogle Scholar
  10. 10.
    O.A. Mudimu, M. Peters, F. Brauner, G. Braun, Overview of membrane processes for the recovery of polyphenols from olive mill wastewater. Am. J. Environ. Sci. 8(3), 195–201 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Larif, A. Zarrouk, A. Soulaymani, A. Elmidaoui, New innovation in order to recover the polyphenols of olive mill wastewater extracts for use as a biopesticide against the Euphyllura olivina and Aphis citricola. Res. Chem. Intermed. (2012). doi: 10.1007/s11164-012-0947-5 Google Scholar
  12. 12.
    C.M. Galanakis, E. Tornberg, V. Gekas, Clarificationofhigh-added value products from olive mill wastewater. J. Food Eng. 99, 190–197 (2010)CrossRefGoogle Scholar
  13. 13.
    M.L. Cayuela, P.D. Millner, S.L.F. Meyer, A. Roig, Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes. Sci. Total Environ. 399, 11–18 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Larif, A. Soulaymani, M. Hnach, A. Elmidaoui, Olive wastewater’s impact on Oued Boufekrane in Meknes-Tafilalet. Am. J. Environ. Sci. 8, 236 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Larif, A. Elmidaoui, A. Zarrouk, H. Zarrok, R. Salghi, B. Hammouti, H. Oudda, F. Bentiss, An investigation of carbon steel corrosion inhibition in hydrochloric acid medium by an environmentally friendly green inhibitor. Res. Chem. Intermed. (2012). doi: 10.1007/s11164-012-0788-2 Google Scholar
  16. 16.
    A. Debo, T. Yangui, A. Dhouib, M. Ksantini, S. Sayadi, Efficacy of a hydroxytyrosol-rich preparation from olive mill wastewater for control of olive psyllid, Euphyllura olivina, infestations. Crop Prot. 30, 1529–1534 (2011)CrossRefGoogle Scholar
  17. 17.
    V.L. Singleton, J.A. Rosi, Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Oenol. Vitic. 16, 144–158 (1965)Google Scholar
  18. 18.
    T. Hanato, H. Kagawa, T. Yasuhara, T. Okuda, Two new flavonoids and other constituents in licorice root: their relative relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36, 2090–2097 (1988)CrossRefGoogle Scholar
  19. 19.
    P.D. Duh, G.C. Yen, Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat.) varieties in soybean oil emulsion. Food Chem. 66, 471–476 (1999)CrossRefGoogle Scholar
  20. 20.
    H. Falleh, R. Ksouri, K. Chaieb, N. Karray-Bouraoui, N. Trabelsi, M. Boulaaba, C. Abdelly, Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C. R. Biol. 331, 372–379 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Larif, A. Adad, R. Hmammouchi, A. Idrissi Taghki, A. Soulaymani, A. Elmidaoui, M. Bouachrine, T. Lakhlifi, Biological activities of triazine derivatives. Combining DFT and QSAR results. Arab. J. Chem. (2013). doi: 10.1016/j.arabjc.2012.12.033 Google Scholar
  22. 22.
    Agence Française de Normalisation (Afnor), Recueil de normes Françaises: Eau, méthodes d’essai, 2nd edn. (Paris, France, 1983), p. 621Google Scholar
  23. 23.
    J.J. Macheix, A. Fleuriet, J.A. Billot, Fruit phenolics (CRC Press Inc., Boca Raton, 1990)Google Scholar
  24. 24.
    H.B. Li, K.W. Cheng, C.C. Wong, K.W. Fan, F. Chen, Y. Tian, Evaluation of antioxidant capacity and total phenolic content of different fraction of selected microalgae. Food Chem. 102, 771–776 (2007)CrossRefGoogle Scholar
  25. 25.
    T. Bahorun, B. Grinier, F. Trotin, G. Brunet, T. Pin, M. Luncky, J. Vasseur, M. Cazin, C. Cazin, M. Pinkas, Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittelforschung 46(11), 1086–1089 (1996)Google Scholar
  26. 26.
    J. Rodier, L. Bernard, M. Nicole, coll. L’analyse de l’eau, eaux naturelles, eaux résiduaires, eaux de mer, 9ème édn. (Dunod, Paris, 2009). ISBN 987-2-10-054179-9Google Scholar
  27. 27.
    L. Gachkar, D. Yadegari, M.B. Rezaei, M. Taghizadeh, S.A. Astaneh, I. Rasooli, Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 102, 898–904 (2007)CrossRefGoogle Scholar
  28. 28.
    G. Leyral, J.N. Joffin, Microbiologie technique: 2ème Édition., Collection Biologie technique. Pédagogique d’Aquitaine 2, 290 (2001)Google Scholar
  29. 29.
    C. Bekhech, F. Atik-Bekkara, E. Abdelouahid, F. Tomi, J. Casanova, Composition and antibacterial activity of the essential oil of Thymus fontanesii Boiss. Et Rent. from Algeria. J. Essent. Oil Res. 19, 594–596 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Bourkhiss, M. Hnach, B. Bourkhiss, M. Ouhssine, A. Chaouch, Composition chimique et propriétés antimicrobiennes de l’huile essentielle extraite des feuilles de Tetraclinis articulata (Vahl) du Maroc. Afrique Science 03(2), 232–242 (2007)Google Scholar
  31. 31.
    A. Remmal et al., Improved method of determination of antimicrobial activity of essential oils in agar medium. J. Essent. Oil Res. 5(2), 179–184 (1993)Google Scholar
  32. 32.
    B. Satrani et al., Composition chimique et activité antimicrobienne des huiles essentielles de Satureja calamintha et Satureja alpina du Maroc. Ann. Falsif. Expert. Chim. Toxicol. 94(956), 241–250 (2001)Google Scholar
  33. 33.
    C. Amaral, M.S. Lucas, J. Coutinho, L.A. Crespi, M.D.R. Anjos, C. Pais, Microbiological and physiochemical characterization of olive mill in Northeastern Portugal. Bioresour. Technol. 99, 7215–7223 (2008)CrossRefGoogle Scholar
  34. 34.
    K. Loziene, P.R. Venskutonis, Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochem. Syst. Ecol. 33, 517–525 (2006)CrossRefGoogle Scholar
  35. 35.
    M.A. Curado et al., Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides. Phytotherapy 67, 2363–2369 (2006)Google Scholar
  36. 36.
    A. Nefzaoui, Contribution à la rentabilité de l’oléiculture par une valorisation optimale des sous produits. Option méditerranéennes 16, 101–108 (1991)Google Scholar
  37. 37.
    A. Jail, E. Boukhoubza, A. Nejmeddine, S. Sayadi, L. Hassani, Co-treatment of olive-mill and urban wastewaters by experimental stabilization ponds. J. Hazard. Mater. 176, 893–900 (2010)CrossRefGoogle Scholar
  38. 38.
    N. Leulmi, Etude de la valorisation nutritionnelle des margines et de leur impact sur la réduction de la méthanogènése ruminale chez l’ovin (Magister en Microbiologie appliquée, Nature du diplôme, 2011)Google Scholar
  39. 39.
    A.A. Aganga, K.W. Mosase, Tannins content, nutritivantee value and dry matter digestibility of Lonchocarous capussa, Ziziphus mucropata, Sclerocarya birrea, Kirkia acuminata and Rhus lancea seeds. Animal Feed Sci. Technol. 91, 107–113 (2001)CrossRefGoogle Scholar
  40. 40.
    K. Pedneault, S. Leonhart, L. Angenol, A. Gosselin, A. Ramputh et J. T. Arnason. Influence de la culture hydroponique de quelques plantes médicinales sur la croissance et la concentration en composes secondaires des organes végétaux. Texte de conférence, 5ème colloque sur les produits naturels d’origine végétale, Université Laval, Quebec City, 1–5 (2001)Google Scholar
  41. 41.
    A. Yaacoubi, A. Chahlaoui, M. El yachioui, A. Chaouch, Traitement des margines à pH neutre et en conditions d’aérobie par la microflore du sol avant épandage. Bull. Soc. Pharm. Bordeaux. 149, 43–56 (2010)Google Scholar
  42. 42.
    A. Jouraiphy, S.M. El Gharous, J.C. Revel, M. Hafidi, Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int. Biodeterior. Biodegrad. 56, 101–108 (2005)CrossRefGoogle Scholar
  43. 43.
    G. Leray, E. Vierling, Microbiologie et toxicologie des aliments: Hygiène et sécurité alimentaire, 4th edn. (CRDI d’Aquitaine, Malmaison Doin Bordeaux, 2007), p. 290Google Scholar
  44. 44.
    M. Hamdi, R. Ellouz, Treatment of detoxified olive mill wastewater by anaerobic filter and aerobic fluidized bed process. Environ. Technol. 19, 183–188 (1993)CrossRefGoogle Scholar
  45. 45.
    A. Ranalli. L’effluent des huileries d’olive proposition en vue de son épuration, Références aux normes italiennes en la matière, première partie Olivia 37, 30–39 (1991)Google Scholar
  46. 46.
    A. Tantaoui-Elaraki, N. Lattaoui, A. Errifi, Composition and antimicrobial activity of the essential oil of Thymus broussonetii, T. Zygis and T. Satureoïde. J. Essent. Oil Res. 5, 45–53 (1993)CrossRefGoogle Scholar
  47. 47.
    S. Takaç, A. Karakaya, Recovery of phenolic antioxidants from olive mill wastewater. Recent Pat. Chem. Eng. 2, 230–237 (2009)CrossRefGoogle Scholar
  48. 48.
    A.P.A.D. Gurgel et al., Antibacterial effects of P. amboinicus (Lour.) Spreng (Lamiaceae) in methicillin resistant S. aureus (MRSA). Biol. Res. 3(3–4), 117–122 (2009)Google Scholar
  49. 49.
    G. Ciafardini, B.A. Zullo, Antibacterial activity of oil mill water polyphenols on the phytopathogen Xanthomonas campestris spp. Ann. Microbiol. 53, 283–290 (2003)Google Scholar
  50. 50.
    A. Sousa, I.C.F.R. Ferriara, R. Calhella, P.B. Andrade, P. Valentao, R. Seabra et al., Phenolics and antimicrobial activity of traditional stoned table olives alcaparra. Bioorg. Med. Chem. 14, 8533–8538 (2006)CrossRefGoogle Scholar
  51. 51.
    D. Karou, M. H. Dicko, J. Simporé, S. Yameogo, S. Sanon et A. S. Traoré. Activités antioxydantes et antibactériennes des polyphénols extraits de plantes medicinales de la pharmacopée traditionnelle du Burkina Faso. Maitrise des procédés en vue d’améliorer la qualité des aliments, utilisation des OGM, analyse des risques en agroalimentaire. 8–11 novembre. Ouagadougou (2005)Google Scholar
  52. 52.
    A. Firas, F. Hassan, Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J. Zhejiang Univ. Sci. 9(2), 154–159 (2008)Google Scholar
  53. 53.
    A. Dhiman, A. Nanda, A. Sayeed, A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments. Arab. J. Chem. (2012). doi: 10.1016/j.arabjc.2012.05.001 Google Scholar
  54. 54.
    M.M. Cowan, Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564–582 (1999)Google Scholar
  55. 55.
    A. Zhiri, D. Baudoux, Huiles essentielles chémotypées et leurs synergies: aromathérapie scientifique (Édition Inspir Development, Luxembourg, 2005)Google Scholar
  56. 56.
    M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernández-López, J. Perez-Álvarez, Antibacterial activity of lemon (Citrus lemon), mandarin (Citrus reticulata), grapefruit (Citrus paradisi) and orange (Citrus sinensis) essential oils. J. Food Saf. 28(4), 567–576 (2008)CrossRefGoogle Scholar
  57. 57.
    T. Beta, S. Nam, J.E. Dexter, H.D. Sapirstein, Phenolic content and antioxidant activity of pearled wheat and Roller-Milled fractions. Cereal Chem. 82, 390–393 (2005)CrossRefGoogle Scholar
  58. 58.
    S. Omar Said Hassane, B. Satrani, M. Ghanmi, N. Mansouri, H. Mohamed, A. Chaouch, Activité antimicrobienne et composition chimique de l’huile essentielle de Plectranthus aromaticus Roxb. de l’Ile de la Grande Comore. Biotechnol. Agron. Soc. Environ. 15(2), 251–258 (2011)Google Scholar
  59. 59.
    C.Y. Gaudreau, H. Jilbert, I. Josée Gagnon, S. Bekal, Comparison of disk diffusion and agar dilution methods for erythromycin, ciprofloxacin, and tetracycline susceptibility testing of Campylobacter coli and for tetracycline susceptibility testing of Campylobacter jejuni subsp. Jejuni Antimicrob Agents Chemother 52(12), 4475–4477 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Majdouline Larif
    • 1
  • Mohammed Ouhssine
    • 2
  • Abdelmajid Soulaymani
    • 3
  • Azzedine Elmidaoui
    • 1
  1. 1.Separation Processes Laboratory, Department of Chemistry, Faculty of ScienceUniversity Ibn TofailKenitraMorocco
  2. 2.Microbial Biotechnology Laboratory, Improvement and Microbial and Plant Transformation, Department of Biology, Faculty of ScienceUniversity Ibn TofailKenitraMorocco
  3. 3.Genetics and Biometry Laboratory, Department of BiologyUniversity Ibn TofailKenitraMorocco

Personalised recommendations