Research on Chemical Intermediates

, Volume 40, Issue 8, pp 3073–3083 | Cite as

Improvement of lithium-ion conductivity in A-site-disordered lithium lanthanum titanates by V5+/Nb5+ substitution



The V5+/Nb5+-substituted lithium lanthaum titanates are synthesized by a conventional solid-state reaction method at high temperature in air. The structural and conductivity studies of the obtained perovskite oxide samples are investigated by x-ray diffraction (XRD), SEM, and impedance spectroscopy. From the powder XRD patterns, it is clearly observed that the synthesized samples exhibit a well-defined cubic structure with the Pm3m (Z = 1) space group. The lattice parameter is decreased with increasing vanadium content in Li0.5−x La0.5Ti1−x V x O3, but increased with the increasing niobium content in Li0.5−x La0.5Ti1−x Nb x O3. The scanning electron microscope measurements confirmed that these materials consist of fairly ordered grains throughout the surface area. The conductivity variations with the substitution of vanadium/niobium are also reported. The bulk ionic conductivity measured in the temperature range from room temperature to 150 °C is about the same as reported earlier for the related lithium lanthanum titanate. However, the low activation energies for ionic conduction observed for these samples encourage further investigations for better conductors in this system.


Lithium lanthanum titanate X-ray diffraction Impedance spectroscopy Perovskite oxides 


  1. 1.
    S. Stramare, W. Weppener, Ionics 5, 405 (1999)CrossRefGoogle Scholar
  2. 2.
    H.Y. Liu, W.J. Wang, S.T. Wu, Ionics 278, 8 (2002)Google Scholar
  3. 3.
    A.G. Belous, J. Eur. Ceram. Soc. 21, 1797 (2001)CrossRefGoogle Scholar
  4. 4.
    E.A. Fortalnova, O.N. Garvilrnko, A.G. Belous, E.D. Politova, Russ. J. Gen. Chem. 79, 1987 (2009)CrossRefGoogle Scholar
  5. 5.
    A.D. Rabertson, A.R. West, A.G. Ritchie, Solid State Ionics 104, 1 (1997)CrossRefGoogle Scholar
  6. 6.
    Robert A. Huggins, Electrochim. Acta 22, 773 (1997)CrossRefGoogle Scholar
  7. 7.
    Phillippe Knauth, Solid State Ionics 180, 911 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Karczewski, B. Riegel, M. Gazda, P. Jasinski, B. Kusz, J. Electroceramics 24, 326 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Hashimoto, F.W. Poulsen, M. Mogensen, J. Alloy, Comp. 439, 232 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, J. Mater. Chem. 12, 1500 (2002)CrossRefGoogle Scholar
  11. 11.
    Y. Kawakami, H. Ikuta, M. Wakihara, J. Solid State Electrochem. 2, 206 (1998)CrossRefGoogle Scholar
  12. 12.
    H. Ohsato, M. Imaeda, Y. Okino, H. Kishi and T. Okuda, JCPDS internal center for diffraction data, 1997Google Scholar
  13. 13.
    L.X. He, H.I. Yoo, J. Electrochimica Acta 48, 1357 (2003)CrossRefGoogle Scholar
  14. 14.
    S. Garcia Martin, J.M. Rojo, H. Tsukamoto, E. Moran, M.A. Alario-Franco, Solid State Ionics 116, 11 (1999)CrossRefGoogle Scholar
  15. 15.
    T. Katsumata, Y. Matsui, Y. Inaguma, M. Itoh, Solid State Ionics 86–88, 165 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsAndhra UniversityVisakhapatnamIndia

Personalised recommendations