Skip to main content
Log in

Use of drinking water sludge in the production process of zeolites

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This study reports the synthesis of zeolites A, X, and P, cancrinite, and sodalite using sludge generated in a drinking water plant. Two experimental steps were carried out: (1) fusion and (2) hydrothermal treatment. Crystallization was achieved by means of a 23 experimental design with central point with the following factors: temperature, time, and solid/liquid ratio. The sludge presented Si and Al contents (SiO2/Al2O3 = 1.7) which allow the synthesis of zeolites with high cation exchange capacity. The content of organic matter was considerable (loss on ignition 26.1 %), but is eliminated in the fusion step at 550 °C. This process also permits the conversion of the initial aluminosilicates into zeolite precursors (sludge–NaOH mix of 1:0.785 g/g). Hydrothermal treatment then permits the crystallization of the aforementioned zeolites. These materials showed high cation exchange capacities as compared to other commercial and experimentally synthesized zeolites, and can be used in the removal of heavy metals such Cd2+, Pb2+, Cu2+, Fe2+, and ammonium present in water, providing an interesting new option in wastewater treatment and remediation of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.M. Ramirez Zamora, F. Espejel Ayala, L. Chavez Garcia, A. Duran Moreno, R. Schouwenaars, J. Environ. Sci. Health. A 43, 1562–1568 (2008)

    Article  CAS  Google Scholar 

  2. K-S. You, G-Ch. Han, H-Ch. Cho, J-W. Ahn, TMS Annual Meeting. 37–41 (2007)

  3. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use, 3rd edn. (EUA, New York, 1974)

    Google Scholar 

  4. X. Querol, A. Alastuey, J.L. Fernández-Turiel, A. López-Soler, Fuel 74, 1226–1231 (1995)

    Article  CAS  Google Scholar 

  5. T. Wajima, M. Haga, K. Kuzawa, H. Ishomoto, O. Tamada, K. Ito, J. Hazard. Mater. B132, 244–252 (2006)

    Article  Google Scholar 

  6. Q. Guan, D. Wu, Y. Lin, X. Chen, X. Wang, Ch. Li, S. He, J. Hazard. Mater. 167, 244–249 (2009)

    Article  CAS  Google Scholar 

  7. F. Espejel-Ayala, R. M. Ramírez Zamora, MRS Proceedings 1380 (2012) imrc2011-1380-s21-full030. doi:10.1557/opl.2012.403

  8. Molina, C. Poole, Miner. Eng. 17, 167–173 (2004)

    Article  CAS  Google Scholar 

  9. D. Wu, Y. Sui, X. Chen, S. He, X. Wang, H. Jong, Fuel 87, 2194–2200 (2008)

    Article  CAS  Google Scholar 

  10. M. Vaca Mier, R.C. López, R. Gerh, B.E. Jiménez Cisneros, P.J.J. Alvarez, Water Res. 35, 373–378 (2001)

    Article  CAS  Google Scholar 

  11. R. M. Barrer, Hydrothermal Chemistry of Zeolites. (New York: EUA, 1982)

  12. K. Latham, C.D. Wiliams, C.V.A. Duke, Zeolites 17, 513–516 (1996)

    Article  CAS  Google Scholar 

  13. Y. Yaping, Z. Xiaoqiang, Q. Weilan, W. Mingwen, Fuel 87, 1880–1886 (2008)

    Article  Google Scholar 

  14. C.A. Ríos, C.D. Williams, M.A. Fullen, Appl. Clay Sci. 42, 446–454 (2009)

    Article  Google Scholar 

  15. V.S. Somerset, L.F. Petrik, R.A. White, M.J. Klink, D. Key, E. Iwuoha, Talanta 64, 109–114 (2004)

    Article  CAS  Google Scholar 

  16. R. Juan, S. Hernández, J.M. Andrés, C. Ruiz, Fuel 86, 1811–1821 (2007)

    Article  CAS  Google Scholar 

  17. G. Cerri, A. Langella, M. Pansini, P. Cappelletti, Clays Clay Mater. 50, 127–135 (2002)

    Article  CAS  Google Scholar 

  18. W. Qiu, Y. Zheng, Chem. Eng. J. 145, 483–488 (2008)

    Article  Google Scholar 

  19. Y. Watanabe, H. Yamada, J. Tanaka, Y. Komatsu, Y. Moriyoshi, Sep. Sci. Technol. 39, 2091–2104 (2004)

    Article  CAS  Google Scholar 

  20. S. Zhang, X. Cui, L. Liu, W. Zhang, Mater. Lett. 64, 2667–2669 (2010)

    Article  CAS  Google Scholar 

  21. D.E.W. Vaughan, H.P. Yennawar, A.J. Perrotta, A.J. Benesi, Microporous Mesoporous Mater. 123, 274–279 (2009)

    Article  CAS  Google Scholar 

  22. Z. Huo, X. Xu, Z. Lü, J. Song, M. He, Z. Li, Q. Wang, L. Yan, Microporous Mesoporous Mater. 158, 137–140 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Omar Novelo for his assistance in the SEM analyses and Leticia García for her assistance in N2 adsorption–desorption analyses. F. Espejel Ayala acknowledges support from DGAPA in the form of his post-doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ramírez-Zamora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espejel-Ayala, F., Schouwenaars, R., Durán-Moreno, A. et al. Use of drinking water sludge in the production process of zeolites. Res Chem Intermed 40, 2919–2928 (2014). https://doi.org/10.1007/s11164-013-1138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1138-8

Keywords

Navigation