Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 8, pp 2919–2928 | Cite as

Use of drinking water sludge in the production process of zeolites

  • F. Espejel-Ayala
  • R. Schouwenaars
  • A. Durán-Moreno
  • R. M. Ramírez-Zamora
Article

Abstract

This study reports the synthesis of zeolites A, X, and P, cancrinite, and sodalite using sludge generated in a drinking water plant. Two experimental steps were carried out: (1) fusion and (2) hydrothermal treatment. Crystallization was achieved by means of a 23 experimental design with central point with the following factors: temperature, time, and solid/liquid ratio. The sludge presented Si and Al contents (SiO2/Al2O3 = 1.7) which allow the synthesis of zeolites with high cation exchange capacity. The content of organic matter was considerable (loss on ignition 26.1 %), but is eliminated in the fusion step at 550 °C. This process also permits the conversion of the initial aluminosilicates into zeolite precursors (sludge–NaOH mix of 1:0.785 g/g). Hydrothermal treatment then permits the crystallization of the aforementioned zeolites. These materials showed high cation exchange capacities as compared to other commercial and experimentally synthesized zeolites, and can be used in the removal of heavy metals such Cd2+, Pb2+, Cu2+, Fe2+, and ammonium present in water, providing an interesting new option in wastewater treatment and remediation of soils.

Keywords

Sludge Drinking water plants Zeolite Ion exchange 

Notes

Acknowledgments

The authors thank Omar Novelo for his assistance in the SEM analyses and Leticia García for her assistance in N2 adsorption–desorption analyses. F. Espejel Ayala acknowledges support from DGAPA in the form of his post-doctoral grant.

References

  1. 1.
    R.M. Ramirez Zamora, F. Espejel Ayala, L. Chavez Garcia, A. Duran Moreno, R. Schouwenaars, J. Environ. Sci. Health. A 43, 1562–1568 (2008)CrossRefGoogle Scholar
  2. 2.
    K-S. You, G-Ch. Han, H-Ch. Cho, J-W. Ahn, TMS Annual Meeting. 37–41 (2007)Google Scholar
  3. 3.
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use, 3rd edn. (EUA, New York, 1974)Google Scholar
  4. 4.
    X. Querol, A. Alastuey, J.L. Fernández-Turiel, A. López-Soler, Fuel 74, 1226–1231 (1995)CrossRefGoogle Scholar
  5. 5.
    T. Wajima, M. Haga, K. Kuzawa, H. Ishomoto, O. Tamada, K. Ito, J. Hazard. Mater. B132, 244–252 (2006)CrossRefGoogle Scholar
  6. 6.
    Q. Guan, D. Wu, Y. Lin, X. Chen, X. Wang, Ch. Li, S. He, J. Hazard. Mater. 167, 244–249 (2009)CrossRefGoogle Scholar
  7. 7.
    F. Espejel-Ayala, R. M. Ramírez Zamora, MRS Proceedings 1380 (2012) imrc2011-1380-s21-full030. doi: 10.1557/opl.2012.403
  8. 8.
    Molina, C. Poole, Miner. Eng. 17, 167–173 (2004)CrossRefGoogle Scholar
  9. 9.
    D. Wu, Y. Sui, X. Chen, S. He, X. Wang, H. Jong, Fuel 87, 2194–2200 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Vaca Mier, R.C. López, R. Gerh, B.E. Jiménez Cisneros, P.J.J. Alvarez, Water Res. 35, 373–378 (2001)CrossRefGoogle Scholar
  11. 11.
    R. M. Barrer, Hydrothermal Chemistry of Zeolites. (New York: EUA, 1982)Google Scholar
  12. 12.
    K. Latham, C.D. Wiliams, C.V.A. Duke, Zeolites 17, 513–516 (1996)CrossRefGoogle Scholar
  13. 13.
    Y. Yaping, Z. Xiaoqiang, Q. Weilan, W. Mingwen, Fuel 87, 1880–1886 (2008)CrossRefGoogle Scholar
  14. 14.
    C.A. Ríos, C.D. Williams, M.A. Fullen, Appl. Clay Sci. 42, 446–454 (2009)CrossRefGoogle Scholar
  15. 15.
    V.S. Somerset, L.F. Petrik, R.A. White, M.J. Klink, D. Key, E. Iwuoha, Talanta 64, 109–114 (2004)CrossRefGoogle Scholar
  16. 16.
    R. Juan, S. Hernández, J.M. Andrés, C. Ruiz, Fuel 86, 1811–1821 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Cerri, A. Langella, M. Pansini, P. Cappelletti, Clays Clay Mater. 50, 127–135 (2002)CrossRefGoogle Scholar
  18. 18.
    W. Qiu, Y. Zheng, Chem. Eng. J. 145, 483–488 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Watanabe, H. Yamada, J. Tanaka, Y. Komatsu, Y. Moriyoshi, Sep. Sci. Technol. 39, 2091–2104 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Zhang, X. Cui, L. Liu, W. Zhang, Mater. Lett. 64, 2667–2669 (2010)CrossRefGoogle Scholar
  21. 21.
    D.E.W. Vaughan, H.P. Yennawar, A.J. Perrotta, A.J. Benesi, Microporous Mesoporous Mater. 123, 274–279 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Huo, X. Xu, Z. Lü, J. Song, M. He, Z. Li, Q. Wang, L. Yan, Microporous Mesoporous Mater. 158, 137–140 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. Espejel-Ayala
    • 1
    • 2
  • R. Schouwenaars
    • 2
  • A. Durán-Moreno
    • 3
  • R. M. Ramírez-Zamora
    • 1
  1. 1.Coordinación de Ingeniería Ambiental, Instituto de Ingeniería Universidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Departamento de Materiales y Manufactura, DIMEI, Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Departamento de Ingeniería Química, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations