Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 8, pp 2737–2771 | Cite as

Review of the synthesis, characterization, and properties of LaAlO3 phosphors

  • Jagjeet Kaur
  • Deepti Singh
  • Vikas Dubey
  • N. S. Suryanarayana
  • Yogita Parganiha
  • Pooja Jha
Article

Abstract

In this review different methods of preparing lanthanum aluminate (LaAlO3) phosphors are discussed. The molten salt method, the combustion method, the sucrose method, and the coprecipitation technique are the best methods for preparing LaAlO3 phosphors with small particle size and high surface area by low-temperature synthesis. LaAlO3 usually has a rhombohedral structure. It has good dielectric properties and, hence, is regarded as an attractive alternative to SiO2 in microelectronic devices. LaAlO3 phosphors have excellent chemical and thermal stability, mechanical durability, and exploitable optical and electronic properties, leading to a wide range of potential applications. LaAlO3 phosphors doped with rare-earth ions have luminescence properties and can, hence, be used in optical display systems.

Keywords

Synthesis Characterization Dielectric study LaAlO3 phosphors 

References

  1. 1.
    R.K. Simon, C.E. Platt, K.P. Daly, A.E. Lee, M.K. Wager, Appl. Phys. Lett. 53, 2677 (1988)CrossRefGoogle Scholar
  2. 2.
    B. Jancar, D. Suvorov, M. Valant, G. Drazic, J. Eur. Ceram. Soc. 23, 1391 (2003)CrossRefGoogle Scholar
  3. 3.
    I. Zvereva, Y. Smirnov, V. Gusarov, V. Popova, J. Choisnet, Solid State Sci. 5, 343 (2003)CrossRefGoogle Scholar
  4. 4.
    A.K. Adak, P. Pramanik, Mater. Lett. 30, 269 (1997)CrossRefGoogle Scholar
  5. 5.
    M. Chroma, J. Pinkas, I. Pakutinskiene, A. Begankiene, A. Kareiva, Ceram. Int. 31, 1123 (2005)CrossRefGoogle Scholar
  6. 6.
    S.N. Koc, F. Oksuzomer, E. Yasav, S. Akturk, M.A. Gurkaynak, Mater. Res. Bull. 41, 2291 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Barrera, S. Fuentes, M. Viniegra, M. Avalos-Borja, N. Bogdan Chikova, J.C. Molina, Mater. Res. Bull. 42, 640 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Xu, G. Huang, H. Long, Ceram. Int. 29, 837 (2003)CrossRefGoogle Scholar
  9. 9.
    D. Zhou, G. Huang, X. Chen, J. Xu, S. Gong, Mater. Chem. Phys. 84, 33 (2004)CrossRefGoogle Scholar
  10. 10.
    P.J. Deren, K. Lemanski, A. Gagor, M. Watras, M. Malecka, M. Zawadzki, J. Solid State Chem. 183, 2095 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Pazik, G.A. Seisenbaeva, R.J. Wiglusz, L. Kepinski, V.G. Kessler, Inorg. Chem. 50, 2966 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Ran, L. Gao, Ceram. Int. 34, 443 (2008)CrossRefGoogle Scholar
  13. 13.
    J.J. Kingsley, K.C. Patil, Mater. Lett. 6, 427 (1988)CrossRefGoogle Scholar
  14. 14.
    M.D. Shaji Kumar, T.M. Srinivasan, P. Ramasamy, C. Subramanian, Mater. Lett. 25, 171 (1995)CrossRefGoogle Scholar
  15. 15.
    E. Taspinar, A. Cuneyt Tas, J. Am. Ceram. Soc. 80(1), 133 (1997)CrossRefGoogle Scholar
  16. 16.
    J.P. Jacobs, M.A.S. Miguel, L.J. Alvarez, J. Mol. Struct. (Theochem) 390, 193 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Kakihana, T. Okubo, J. Alloys Compd. 266, 129 (1998)CrossRefGoogle Scholar
  18. 18.
    R. Spinicci, P. Marini, S. De Rossi, M. Faticanti, P. Porta, J. Mol. Catal. A 176, 253 (2001)CrossRefGoogle Scholar
  19. 19.
    S.A. Hayward, S.A.T. Redfern, E.K.H. Salje, J. Phys. Condens. Matter 14, 10131 (2002)CrossRefGoogle Scholar
  20. 20.
    P.J. Deren, J.C. Krupa, J. Lumin. 102, 386 (2003)CrossRefGoogle Scholar
  21. 21.
    W.F. Xianga, H.B. Lua, Z.H. Chena, X.B. Lub, M. Hea, H. Tiana, Y.L. Zhoua, C.R. Lia, X.L. Mac, J. Cryst. Growth 271, 165 (2004)CrossRefGoogle Scholar
  22. 22.
    P.J. Deren, J.C. Krupa, J. Alloys Compd. 380, 362 (2004)CrossRefGoogle Scholar
  23. 23.
    E.A. Fidancev, P.J. Deren, J.C. Krupa, J. Alloys Compd. 380, 376 (2004)CrossRefGoogle Scholar
  24. 24.
    T. Busani, R.A.B. Devine, J. Appl. Phys. 96, 6642 (2004)CrossRefGoogle Scholar
  25. 25.
    C. Chang, Z. Yuan, D. Mao, J. Alloys Compd. 415, 220 (2006)CrossRefGoogle Scholar
  26. 26.
    D. Hreniak, W. Strek, P. Deren, A. Bednarkiewicz, A. Lukowiak, J. Alloys Compd. 408, 828 (2006)CrossRefGoogle Scholar
  27. 27.
    P. Deren, Ph. Goldner, O.G. Noel, J. Lumin. 119, 38 (2006)CrossRefGoogle Scholar
  28. 28.
    T. Ishigaki, K. Seki, E. Nishimura, T. Watanabe, M. Yoshimura, J. Alloys Compd. 408, 1177 (2006)CrossRefGoogle Scholar
  29. 29.
    Z.Q. Tian, H.T. Yu, Z.L. Wang, Mater. Chem. Phys. 106, 126 (2007)CrossRefGoogle Scholar
  30. 30.
    C.L. Kuo, C.L. Wang, T.Y. Chena, G.J. Chenb, I.M. Hung, C.J. Shih, K.Z. Funga, J. Alloys Compd. 440, 367 (2007)CrossRefGoogle Scholar
  31. 31.
    Z. Li, S. Zhang, W.E. Lee, J. Eur. Ceram. Soc. 27, 3201 (2007)CrossRefGoogle Scholar
  32. 32.
    S.K. Behera, P.K. Sahu, S.K. Pratihar, S. Bhattacharyya, J. Phys. Chem. Solids 69, 2041 (2008)CrossRefGoogle Scholar
  33. 33.
    X. Luo, B. Wang, J. Appl. Phys. 104, 073518 (2008)CrossRefGoogle Scholar
  34. 34.
    P.J. Deren, Ph. Goldner, O.G. Noel, J. Alloys Compd. 461, 58–60 (2008)CrossRefGoogle Scholar
  35. 35.
    X. Luo, B. Wang, J. Appl. Phys. 104, 053503 (2008)CrossRefGoogle Scholar
  36. 36.
    V. Singh, D.T. Naidu, R.P.S. Chakradhar, Y.C. Ratnakaramd, J.J. Zhu, M. Soni, Physica B 403, 3781 (2008)CrossRefGoogle Scholar
  37. 37.
    P.J. Dereń, A. Bednarkiewicz, Ph. Goldner, O. Guillot-Noël, J. Appl. Phys. 103, 043102 (2008)CrossRefGoogle Scholar
  38. 38.
    A. Gocalinska, P.J. Deren, P. Głuchowski, Ph. Goldner, O. Guillot-Noel, Opt. Mater. 30, 680 (2008)CrossRefGoogle Scholar
  39. 39.
    T. Kharlamova, S. Pavlova, V. Sadykov, O. Lapina, D. Khabibulin, T. Krieger, V. Zaikovskii, A. Ishchenko, A. Salanov, V. Muzykantov, N. Mezentseva, M. Chaikina, N. Uvarov, J. Frade, Chr. Argirusis, Solid State Ion. 179, 1018 (2008)CrossRefGoogle Scholar
  40. 40.
    P.J. Deren, R. Mahiou, Ph. Goldner, Opt. Mater. 31, 465 (2009)CrossRefGoogle Scholar
  41. 41.
    I.Y.K. Chang, S.W. You, M.G. Chen, P.C. Juan, C.H. Chen, J.Y. Lee, J. Appl. Phys. 105, 104512 (2009)CrossRefGoogle Scholar
  42. 42.
    X. Liu, J. Zou, J. Lin, J. Electrochem. Soc. 156(2), P43 (2009)CrossRefGoogle Scholar
  43. 43.
    J. Chandradass, K.H. Kim, J. Alloys Compd. 481, L31 (2009)CrossRefGoogle Scholar
  44. 44.
    H.F. Yu, J. Wang, S.S. Wang, Y.M. Kuo, J. Phys. Chem. Solids 70, 218 (2009)CrossRefGoogle Scholar
  45. 45.
    Z. Tian, W. Huang, Y. Liang, Ceram. Int. 35, 661 (2009)CrossRefGoogle Scholar
  46. 46.
    J. Chandradass, H.K. Kim, J. Cryst. Growth 311, 3631 (2009)CrossRefGoogle Scholar
  47. 47.
    Z. Negahdaria, A. Saberi, M.W. Poradaa, J. Alloys Compd. 485, 367 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Boudali, B. Amrani, M.D. Khodja, A. Abada, K. Amara, Comput. Mater. Sci. 45, 1068 (2009)CrossRefGoogle Scholar
  49. 49.
    P. Zhang, J.-P. Zhanga, Eur. Phys. J. B 78, 1 (2010)CrossRefGoogle Scholar
  50. 50.
    Z.Y. Mao, Y.C. Zhu, Q. Fei, D. Wang, J. Lumin. 131, 1048 (2011)CrossRefGoogle Scholar
  51. 51.
    B. Liu, F. Yuan, X. Huc, J. Phys. Chem. Solids 72, 380 (2011)CrossRefGoogle Scholar
  52. 52.
    P.J. Deren, K. Lemanski, J. Lumin. 131, 445 (2011)CrossRefGoogle Scholar
  53. 53.
    M. Malinowski, M. Kaczka, S. Turczynski, D. Pawlak, Opt. Mater. 33, 1004 (2011)CrossRefGoogle Scholar
  54. 54.
    H. Mortada, D. Dentel, M. Derivaz, J.L. Bischoff, E. Denys, R. Moubah, C.U. Bouillet, J. Werckmann, J. Cryst. Growth 323, 247 (2011)CrossRefGoogle Scholar
  55. 55.
    M. Dudek, A. Jusza, K. Anders, L. Lipinska, M. Baran, R. Piramidowicz, J. Rare Earths 29(12), 1123 (2011)CrossRefGoogle Scholar
  56. 56.
    H.F. Yu, Y.M. Guo, J. Alloys Compd. 509, 1984 (2011)CrossRefGoogle Scholar
  57. 57.
    K.C. Liu, W.H. Tzeng, K.M. Chang, J.J. Huang, Y.J. Lee, P.H. Yeh, P.S. Chen, H.Y. Lee, F. Chen, M.J. Tsai, Thin Solid Films 520, 1246 (2011)CrossRefGoogle Scholar
  58. 58.
    D. Yamasaka, K. Tamagawa, Y. Ohki, J. Appl. Phys. 110, 074103 (2011)CrossRefGoogle Scholar
  59. 59.
    M. Maczka, E.M. Mendoza, A.F. Fuentes, K. Lemanski, P. Deren, J. Solid State Chem. 187, 249 (2012)CrossRefGoogle Scholar
  60. 60.
    K.A. Khamkar, S.V. Bangale, S.R. Bamane, V.V. Dhapte, Der Chem. Sin. 3(4), 891 (2012)Google Scholar
  61. 61.
    L. Djoudi, M. Omari, N. Madoui, EPJ. Web Conf. 29, 16 (2012)CrossRefGoogle Scholar
  62. 62.
    E.M. Mendoza, S.M. Montemayor, J.I.E. Garcı, A.F. Fuentes, J. Am. Ceram. Soc. 95(4), 1276 (2012)CrossRefGoogle Scholar
  63. 63.
    H. Li, J. Robertson, J. Appl. Phys. 112, 034108 (2012)CrossRefGoogle Scholar
  64. 64.
    G. Murtaza, I. Ahmad, J. Appl. Phys. 111, 123116 (2012)CrossRefGoogle Scholar
  65. 65.
    A.N. Jang, S.K. Seung, K.H. Choi, J.H. Song, Ceram. Int. 38S, S627 (2012)CrossRefGoogle Scholar
  66. 66.
    M. Maczka, A. Bednarkiewicz, E.M. Mendoza, A.F. Fuentes, L. Kepinski, J. Solid State Chem. 194, 264 (2012)CrossRefGoogle Scholar
  67. 67.
    S. Li, B. Bergman, Z. Zhao, Mater. Chem. Phys. 132, 309 (2012)CrossRefGoogle Scholar
  68. 68.
    A. Dhahri, K.H. Naifer, A. Benedetti, F. Enrichi, M. Ferid, Opt. Mater. 34, 1742 (2012)CrossRefGoogle Scholar
  69. 69.
    A. Watras, R. Pazik, P.J. Deren, J. Lumin. 133, 35 (2013)CrossRefGoogle Scholar
  70. 70.
    J.M. Rondinelli, Model Catalytic Oxide Surfaces: A Study of the LaAlO 3 (001) Surface (Northwestern University, Evanston, 2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jagjeet Kaur
    • 1
  • Deepti Singh
    • 1
  • Vikas Dubey
    • 1
  • N. S. Suryanarayana
    • 1
  • Yogita Parganiha
    • 1
  • Pooja Jha
    • 1
  1. 1.Department of PhysicsGovernment V.Y.T. PG. Autonomous CollegeDurgIndia

Personalised recommendations