Research on Chemical Intermediates

, Volume 40, Issue 5, pp 2007–2014 | Cite as

Synthesis of CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nano-particles via a combustion pathway and study of their optical properties

  • Mohammad Sadegh
  • Alireza Badiei


Use of citric acid as a chelating agent and fuel, ammonium nitrate as fuel, boric acid as flux material and silica as supports, CaWO4:Ln3+@SiO2 (Ln = Er and Tm) nanoparticles were synthesized via a combustion reaction at 800 °C. Characterization of the samples was performed by X-ray diffractometer (XRD), reflectance UV–Vis spectrophotometer, fluorescence spectrophotometer (PL) and transmission electron microscope (TEM). XRD patterns showed that tetragonal crystalline structure of scheelite and silica supports were formed, and that the formation of a silica support could enhance the luminescence intensity of CaWO4:Ln3+. The reflectance UV–Vis and PL spectra indicated the broad absorption band of WO4 2− groups about 240 nm, the WO4 2− wide excitation band with maximum at 240 nm, a broad emission band of WO4 2− with maximum about 420 nm, and characteristic emissions of Ln3+ ions. According to the TEM analysis, CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nanoparticles have almost the same morphology with average particle sizes about 50 nm.


Nanoparticle CaWO4:Ln3+ Combustion process Luminescence Scheelite crystal 



This work was financially supported by the University of Tehran.


  1. 1.
    M.J. Treadaway, R.C. Powell, Phys. Rev. B 11, 862 (1975)CrossRefGoogle Scholar
  2. 2.
    M. Nikl, P. Bohacek, E. Mihokova et al., J. Appl. Phys. 91, 2791 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Nikl, P. Bohacek, E. Mihokova et al., J. Lumin. 1243, 87 (2000)Google Scholar
  4. 4.
    M. Nikl, Phys. Status Solidi A 178, 595 (2000)CrossRefGoogle Scholar
  5. 5.
    V. Nagirnyi, E. Feldbach, L. Jonsson et al., Radiat. Meas. 29, 247 (1998)CrossRefGoogle Scholar
  6. 6.
    P. Yang, Z. Quan, C. Li et al., Microporous Mesoporous Mater. 116, 91 (2008)CrossRefGoogle Scholar
  7. 7.
    O. Chukova, S. Nedilko, Z. Moroz, M. Pashkovskyi, J. Lumin. 498, 102 (2003)Google Scholar
  8. 8.
    B. Grobelna, B. Lipowska, A.M. Klonkowski, J. Alloys Compd. 419, 191 (2006)CrossRefGoogle Scholar
  9. 9.
    E. Orhan, M. Anicete-Santos, A.M.A. Maurera et al., J. Solid State Chem. 178, 1284 (2005)CrossRefGoogle Scholar
  10. 10.
    M.V. Nazarov, D.Y. Jeon, J.H. Kang et al., J. Solid State Commun. 131, 307 (2004)CrossRefGoogle Scholar
  11. 11.
    S.J. Chen, J. Li, X.T. Chen et al., J. Cryst. Growth 253, 361 (2003)CrossRefGoogle Scholar
  12. 12.
    E.F. Paski, M.W. Blades, Anal. Chem. 60, 1224 (1988)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J. Ma, J. Tao et al., Mater. Lett. 60, 2991 (2006)CrossRefGoogle Scholar
  14. 14.
    L. Sun, M. Cao, Y. Wang et al., J. Cryst. Growth 289, 231 (2006)CrossRefGoogle Scholar
  15. 15.
    V. Thangadurai, C. Knittlmayer, W. Weppner, Mater. Sci. Eng. B 106, 228 (2004)CrossRefGoogle Scholar
  16. 16.
    X. Lou, D. Chen, Mater. Lett. 62, 1681 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Sadegh, A. Badiei, A. Abbasi et al., J. Lumin. 130, 2072 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Ghobeiti Hasab, S.A. Seyyed Ebrahimi, A. Badiei, J. Non Cryst. Solids 353, 802 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Ghobeiti Hasab, S.A. Seyyed Ebrahimi, A. Badiei, J. Magn. Magn. Mater. 310, 2477 (2007)CrossRefGoogle Scholar
  20. 20.
    J.E. Huheey, Inorganic chemistry, principles of structure and reactivity (Harper & Row, London, 1978)Google Scholar
  21. 21.
    G. Zhang, R. Jia, Q. Wu, Mater. Sci. Eng. B 128, 254 (2006)CrossRefGoogle Scholar
  22. 22.
    H. Wang, J. Yang, C.M. Zhang, J. Lin, J. Solid State Chem. 182, 2716 (2009)CrossRefGoogle Scholar
  23. 23.
    J.C.G. Bunzli, C. Piguet, Chem. Soc. Rev. 34, 1048 (2005)CrossRefGoogle Scholar
  24. 24.
    R. Borja-Urby, L.A. Diaz-Torres, P. Salas et al., Mater. Sci. Eng. B 174, 169 (2010)CrossRefGoogle Scholar
  25. 25.
    U. Hömmerich, E.E. Nyein, D.S. Lee et al., Mater. Sci. Eng. B 105, 91 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Jiayue, X. Jianbo, Z. Xiangyan, D. Haiyan, J. Rare Earths 29, 1 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Wang, P. Yang et al., J. Nanopart. Res. 12, 6 (2010)Google Scholar
  28. 28.
    Y. Su, L. Li, G. Li, J. Mater. Chem. 19, 16 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations