Research on Chemical Intermediates

, Volume 40, Issue 5, pp 1753–1770 | Cite as

Sorption of Bi3+ from acidic solutions using nano-hydroxyapatite extracted from Persian corals



Nano-crystallite hydroxyapatite (nano-HAp) synthesized from Persian corals was used for removing Bi3+ from acidic aqueous solutions. The effects of initial concentration, adsorbent dosage, contact time and temperature were studied in batch experiments. The sorption of Bi3+ by nano-HAp increased as the initial concentration of bismuth ion increased in the medium. The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to study the kinetics of the sorption processes. The pseudo-second-order kinetic model provided the best correlation (R 2 > 0.999) of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. Various thermodynamic parameters, such as \( \Updelta G^\circ \), \( \Updelta H^\circ \) and \( \Updelta S^\circ \) were calculated. Thermodynamics of Bi3+ cation sorption onto nano-HAp system pointed at spontaneous and endothermic nature of the process. The maximum Bi3+ adsorbed was found to be 3,333.33 mg g−1. It was found that the sorption of Bi3+ on nano-HAp correlated well (R 2 = 0.979) with the Langmuir equation as compared to Freundlich and Dubinin–Kaganer–Radushkevich (D-K-R) isotherm equations under the concentration range studied. This study indicated that nano-HAp extracted from Persian corals could be used as an efficient adsorbent for removal of Bi3+ from acidic aqueous solution.


Sorption Bi3+ Nano-hydroxyapatite Thermodynamic Kinetic 



This research was completely supported by Materials and Energy Research Center (MERC) under the project No. 371390051 for which the authors are grateful.


  1. 1.
    N. Tokman, S. Akman, Anal. Chim. Acta 519, 87 (2004)CrossRefGoogle Scholar
  2. 2.
    J.A. Reyes-Aguilera, M.P. Gonzalez, R. Navarro, T.I. Saucedo, M. Avila-Rodriguez, J. Membr. Sci. 310, 13 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Pamphlett, M. Stoltenberg, J. Rungby, G. Danscher, Neurotoxicol. Teratol. 22, 559 (2000)CrossRefGoogle Scholar
  4. 4.
    I. Mobasherpour, E. Salahi, M. Pazouki, Desalination 266, 142 (2011)CrossRefGoogle Scholar
  5. 5.
    X.-B. Chen, J.V. Wright, J.L. Conca, L.M. Peurrung, Environ. Sci. Technol. 31, 624 (1997)CrossRefGoogle Scholar
  6. 6.
    V. Laperche, S.J. Traina, P. Gaddam, T.J. Logan, Environ. Sci. Technol. 30, 3321 (1996)CrossRefGoogle Scholar
  7. 7.
    Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Environ. Sci. Technol. 27, 1803 (1993)CrossRefGoogle Scholar
  8. 8.
    Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Environ. Sci. Technol. 28, 1219 (1994)CrossRefGoogle Scholar
  9. 9.
    E. Mavropoulos, A.M. Rossi, A.M. Costa, C.A.C. Perez, J.C. Moreira, M. Saldanha, Environ. Sci. Technol. 36, 1625 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Nzihou, P. Sharrock, Waste Manag 22, 235 (2002)CrossRefGoogle Scholar
  11. 11.
    Y. Takeuchi, H. Arai, J. Chem. Eng. Jpn. 23, 75 (1990)CrossRefGoogle Scholar
  12. 12.
    J.A. Elliott, L. Tamarkin, J. Comp. Physiol. A 174, 469 (1994)CrossRefGoogle Scholar
  13. 13.
    H. Tanaka, M. Futaoka, R. Hino, K. Kandori, T. Ishikawa, J. Colloid Interface Sci. 283, 609 (2005)CrossRefGoogle Scholar
  14. 14.
    C.C. Fuller, J.R. Bargar, J.A. Davis, M.J. Piana, Environ. Sci. Technol. 36, 158 (2001)CrossRefGoogle Scholar
  15. 15.
    A.G. Leyva, J. Marrero, P. Smichowski, D. Cicerone, Environ. Sci. Technol. 35, 3669 (2001)CrossRefGoogle Scholar
  16. 16.
    S. McGrellis, J.-N. Serafini, J. JeanJean, J.-L. Pastol, M. Fedoroff, Sep. Purif. Technol. 24, 129 (2001)CrossRefGoogle Scholar
  17. 17.
    J. Reichert, J.G.P. Binner, J. Mater. Sci. 31, 1231 (1996)CrossRefGoogle Scholar
  18. 18.
    E.D. Vega, J.C. Pedregosa, G.E. Narda, J. Phys. Chem. Solids 60, 759 (1999)CrossRefGoogle Scholar
  19. 19.
    G. Guillemin, J.L. Patat, J. Fournie, M. Chetail, J. Biomed. Mater. Res. 21, 557 (1987)CrossRefGoogle Scholar
  20. 20.
    L. Merrill, W.A. Basset, Acta Crystallogr. B31, 343 (1975)CrossRefGoogle Scholar
  21. 21.
    Z. Aksu, S. Tezer, Process Biochem. 40, 1347 (2005)CrossRefGoogle Scholar
  22. 22.
    W.J. Weber Jr, J.C. Morris, Am Soc Civil Eng 89, 31 (1963)Google Scholar
  23. 23.
    I. Smičiklas, S. Dimović, I. Plećaš, M. Mitrić, Water Res. 40, 2267 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Lu, S.W. Gibb, Bioresour. Technol. 99, 1509 (2008)CrossRefGoogle Scholar
  25. 25.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)CrossRefGoogle Scholar
  26. 26.
    M. Doğan, M. Alkan, Chemosphere 50, 517 (2003)CrossRefGoogle Scholar
  27. 27.
    Y.-S. Ho, Water Res. 37, 2323 (2003)CrossRefGoogle Scholar
  28. 28.
    Z. Aksu, Process Biochem. 38, 89 (2002)CrossRefGoogle Scholar
  29. 29.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  30. 30.
    E. Malkoç, Y. Nuhoglu, Fresenius Environ. Bull. 12, 376 (2003)Google Scholar
  31. 31.
    K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Sep. Purif. Technol. 24, 497 (2001)CrossRefGoogle Scholar
  32. 32.
    S. Hasany, M. Saeed, M. Ahmed, J. Radioanal. Nucl. Chem. 252, 477 (2002)CrossRefGoogle Scholar
  33. 33.
    S. Khan, M. Williams, Post-Tensioned Concrete Floors (Butterworth-Heinemann, Oxford, 1995), p. 271CrossRefGoogle Scholar
  34. 34.
    S.-H. Lin, R.-S. Juang, J. Hazard. Mater. 92, 315 (2002)CrossRefGoogle Scholar
  35. 35.
    C.-C. Wang, L.-C. Juang, C.-K. Lee, T.-C. Hsu, J.-F. Lee, H.-P. Chao, J. Colloid Interface Sci. 280, 27 (2004)CrossRefGoogle Scholar
  36. 36.
    B.S. Krishna, D.S.R. Murty, B.S. Jai Prakash, J. Colloid Interface Sci. 229, 230 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Ceramics DepartmentMaterials and Energy Research CenterKarajIran

Personalised recommendations