Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 3, pp 1303–1311 | Cite as

Liquid-phase oxidation of 2-methoxy-p-cresol to vanillin with oxygen catalyzed by a combination of CoCl2 and N-hydroxyphthalimide

  • Yuecheng Zhang
  • Xiujuan Li
  • Xiaohui Cao
  • Jiquan Zhao
Article

Abstract

Liquid-phase oxidation of 2-methoxy-p-cresol to vanillin (4-hydroxy-3-methoxybenzaldehyde), in methanol, with molecular oxygen at atmospheric pressure as oxidant and a combination of cobaltous chloride and N-hydroxyphthalimide (NHPI) as catalyst, has been investigated. The effect of reaction conditions on conversion and selectivity for vanillin was studied systematically. Selectivity for vanillin could be enhanced by optimizing the molar ratio of 2-methoxy-p-cresol to NHPI, the amount of sodium hydroxide, reaction time, reaction temperature, and the volume of methanol, which determined the concentration of the reactants. Under the optimized conditions the yield of vanillin was 90.1 %.

Keywords

2-Methoxy-p-cresol Vanillin Oxidation Molecular oxygen Cobaltous chloride N-hydroxyphthalimide 

Abbreviations

NHPI

N-hydroxyphthalimide

Notes

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (no. 21276061).

References

  1. 1.
    S.R. Rao, G.A. Ravishankar, J. Sci. Food Agric. 80(3), 289–304 (2000)CrossRefGoogle Scholar
  2. 2.
    H. Priefert, J. Rabenborst, A. Steinbüchel, Appl. Microbiol. Biotechnol. 56(3–4), 296–314 (2001)CrossRefGoogle Scholar
  3. 3.
    H.O. Mottern, J. Am. Chem. Soc. 56(10), 2107–2108 (1934)CrossRefGoogle Scholar
  4. 4.
    M. Bolognini, F. Cavani, L.D. Pozzo, L. Maselli, F. Zaccarelli, B. Bonelli, M. Armandi, E. Garrone, Appl. Catal. A 272(1–2), 115–124 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Wynberg, Chem. Rev. 60(2), 169–184 (1960)CrossRefGoogle Scholar
  6. 6.
    E.A. Borges da Silva, M. Zabkova, J.D. Araújo, C.A. Cateto, M.F. Barreiro, M.N. Belgacem, A.E. Rodrigues, Chem. Eng. Res. Des. 87(9), 1276–1292 (2009)CrossRefGoogle Scholar
  7. 7.
    J.D.P. Araújo, C.A. Grande, A.E. Rodrigues, Chem. Eng. Res. Des. 88(8), 1024–1032 (2010)CrossRefGoogle Scholar
  8. 8.
    I.A. Pearl, J. Am. Chem. Soc. 64(6), 1429–1431 (1942)CrossRefGoogle Scholar
  9. 9.
    G. Wu, M. Heitz, E. Chornet, Ind. Eng. Chem. Res. 33(6), 718–723 (1994)CrossRefGoogle Scholar
  10. 10.
    I.B. Adilina, T. Hara, N. Ichikuni, S. Shimazu, J. Mol. Catal. A 361–362, 72–79 (2012)CrossRefGoogle Scholar
  11. 11.
    V. Augugliaro, G. Camera-Roda, V. Loddo, G. Palmisano, L. Palmisano, F. Parrino, M.A. Puma, Appl. Catal. B 111–112, 555–561 (2012)CrossRefGoogle Scholar
  12. 12.
    S.N. Sharma, S.B. Chandalia, J. Chem. Technol. Biol. 49(2), 141–153 (1990)CrossRefGoogle Scholar
  13. 13.
    D.F. Taber, S. Patel, T.M. Hambleton, E.E. Winkel, J. Chem. Educ. 84, 7–1158 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Nishizawa, K. Hamada, T. Aratani, EP0 012 939 (1979)Google Scholar
  15. 15.
    W. Jia, H. Wang, A. Qiu, C. Zhu, CN 1167750A (1997)Google Scholar
  16. 16.
    A. Qiu, C. Zhu, J Lai, CN1264695A (2000)Google Scholar
  17. 17.
    R. Chen, R. Chen, CN102295543A (2011)Google Scholar
  18. 18.
    Z. Yu, S. Yan, H. Liu, CN102030625A (2011)Google Scholar
  19. 19.
    J. Wang, A. Zhao, G. Lu, G. Guo, Y. Guo, W. Zhan, Z. Zhang, W. Han, Y. Wang, X. Liu, X. Gong. CN102091637A (2011)Google Scholar
  20. 20.
    J. Hu, J. Mao, H. Li, Z. Chen, CN102381950A (2012)Google Scholar
  21. 21.
    Y. Ishii, S. Sakaguchi, Catal. Today 117(1–3), 105–113 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Aoki, S. Sakaguchi, Y. Ishii, Tetrahedron 61(22), 5219–5222 (2005)CrossRefGoogle Scholar
  23. 23.
    F. Minisci, F. Recupero, A. Cecchetto, C. Gambarotti, C. Punta, R. Paganelli, G.F. Pedulli, F. Fontana, Org. Proc. Res. Dev. 8(2), 163–168 (2004)CrossRefGoogle Scholar
  24. 24.
    P. Lahtinen, J.U. Ahmad, E. Lankinen, P. Pihko, M. Leskelä, T. Repo, J. Mol. Catal. A 275(1–2), 228–232 (2007)CrossRefGoogle Scholar
  25. 25.
    W. Yu, C. Zhou, D. Tong, T. Xu, J. Mol. Catal. A 365, 194–202 (2012)CrossRefGoogle Scholar
  26. 26.
    Y. She, W. Wang, G. Li, Chin. J. Chem. Eng 20(2), 262–266 (2012)CrossRefGoogle Scholar
  27. 27.
    V.S. Kshirsagar, J.M. Nadgeri, P.R. Tayade, C.V. Rode, Appl. Catal. A 339(1), 28–35 (2008)CrossRefGoogle Scholar
  28. 28.
    C.V. Rode, M.V. Sonar, J.M. Nadgeri, R.V. Chaudhari, Org. Pro. Res. Dev. 8(6), 873–878 (2004)CrossRefGoogle Scholar
  29. 29.
    R.A. Sheldon, I.W.C.E. Arends, Adv. Synth. Catal. 346(9–10), 1051–1071 (2004)CrossRefGoogle Scholar
  30. 30.
    Y. Ishii, S. Sakaguchi, T. Iwahama, Adv. Synth. Catal. 343(5), 393–427 (2001)CrossRefGoogle Scholar
  31. 31.
    K.T. Li, P.Y. Liu, Appl. Catal. A 272(1–2), 167–174 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Shimizu, Y. Watanabe, H. Orita, T. Hayakawa, K. Takehira, Tetrahedron Lett. 32(18), 2053–2056 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yuecheng Zhang
    • 1
  • Xiujuan Li
    • 1
  • Xiaohui Cao
    • 1
  • Jiquan Zhao
    • 1
  1. 1.School of Chemical Engineering and Technology, Hebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations