Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 3, pp 1187–1192 | Cite as

Microwave-assisted, methanesulfonic acid-catalyzed synthesis of 3,3′-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones)

  • Xan Qi
  • Meng-Wei Xue
  • Xiao-Jun Sun
  • Yin Zhi
  • Jian-Feng Zhou
Article

Abstract

Efficient synthesis of 3,3′-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) has been achieved by methanesulfonic acid-catalyzed, microwave-assisted reaction of 4-hydroxycoumarin and aromatic aldehydes in ethanol. The procedure has the advantages of high yield, short reaction time, low energy consumption, and convenient work-up. Compound structures were confirmed by IR, 1H NMR, and 13C NMR spectroscopy and by elemental analysis.

Keywords

3,3′-(Arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) 4-Hydroxycoumarin Methanesulfonic acid Microwave irradiation 

References

  1. 1.
    J.H. Lee, H.B. Bang, S.Y. Han et al., Tetrahedron Lett. 48, 2889 (2007)CrossRefGoogle Scholar
  2. 2.
    R.D.R.S. Manian, J. Jayashankaran, R. Raghunathan, Tetrahedron Lett. 48, 1385 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Zhao, N. Neamati, H. Hong et al., J. Med. Chem. 40, 242 (1997)CrossRefGoogle Scholar
  4. 4.
    G.K. Maria, E.J. Marian, Med. Pharm. Chem. 3, 583 (1961)CrossRefGoogle Scholar
  5. 5.
    I. Kostova, N. Trendafilova, G.J. Momekov, Inorg. Biochem. 99, 477 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Ilia, M.M. Caecilia, D. Nicolay, Eur. J. Med. Chem. 41, 882 (2006)CrossRefGoogle Scholar
  7. 7.
    I.I. Manolov, Tetrahedron Lett. 39, 3041 (1998)CrossRefGoogle Scholar
  8. 8.
    P.C.M. Mao, J.F. Mouscadet et al., Chem. Pharm. Bull. 50(12), 1634 (2002)CrossRefGoogle Scholar
  9. 9.
    C.X. Su, J.F. Mouscadet, C.C. Chiang et al., Chem. Pharm. Bull. 54, 682 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Wang, D.Q. Shi, Q.Y. Zhuang et al., Chin. J. Org. Chem. 25, 926 (2005)Google Scholar
  11. 11.
    K. Mazaahir, V. Bansal, P. Mothsra et al., J. Mol. Catal. A: Chem. 268, 76 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Khodabocus, B.M.P. Beebeejaun, Sci. Technol. 5, 21 (2000)Google Scholar
  13. 13.
    M. Wang, Y. Liang, T. Zhang et al., Chin. J. Chem. 29, 1656 (2011)CrossRefGoogle Scholar
  14. 14.
    V. Premasagar, V.A. Palaniswamy, E.J.J. Eisenbraun, Org. Chem. 46, 2974 (1981)CrossRefGoogle Scholar
  15. 15.
    D. Kumar, S. Rudrawar, A.K. Chakraborti, Austr. J. of Chem. 61, 881 (2008)CrossRefGoogle Scholar
  16. 16.
    Shen, Y. B. and Wang, G. W. ARKIVOC. (xvi), 1 (2008)Google Scholar
  17. 17.
    S.J. Tu, C.M. Li, G.G. Li et al., J. Comb. Chem. 9, 1144 (2007)CrossRefGoogle Scholar
  18. 18.
    J.F. Zhou, G.X. Gong, K.B. Shi et al., Chin. Chem. Lett. 20, 672 (2009)CrossRefGoogle Scholar
  19. 19.
    J.F. Zhou, G.X. Gong, H.Q. Zhu et al., Chin. Chem. Lett. 20, 1198 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Wang, S. Cheng, C.F. Gong et al., Chin. J. Chem. 29, 2101 (2011)CrossRefGoogle Scholar
  21. 21.
    G.X. Gong, L.T. An et al., Chin. J. Org. Chem. 29, 1988 (2009)Google Scholar
  22. 22.
    Zhou, J. F.; Sun, X.J.; Lou, F. W. et al., Res Chem Intermed. 38, (2012). doi: 10.1007/s11164-012-0696-5
  23. 23.
    M. Kidwai, V. Bansal, P. Mothsra et al., J. Mol. Catal. A: Chem. 268, 76 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Wang, D.Q. Shi, Q.Y. Zhuang et al., Chin. J. Org. Chem. 25, 926 (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xan Qi
    • 1
  • Meng-Wei Xue
    • 2
  • Xiao-Jun Sun
    • 1
  • Yin Zhi
    • 1
  • Jian-Feng Zhou
    • 1
  1. 1.Jiangsu Key Laboratory for Chemistry of Low-Dimensional MaterialsSchool of Chemistry and Chemical Engineering, Huaiyin Normal UniversityHuaianChina
  2. 2.Department of ChemistryNanjing Xiaozhuang UniversityNanjingChina

Personalised recommendations