Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 7, pp 3255–3263 | Cite as

Highly efficient and N-bromosuccinimide-mediated conversion of carbohydrates to 5-hydroxymethylfurfural under mild conditions

  • Guo Tian
  • Xinli Tong
  • Yanhua Wang
  • Yongtao Yan
  • Song Xue
Article

Abstract

Highly efficient and selective conversion of different carbohydrates to 5-hydroxymethylfurfural (HMF) has been successfully performed with N-bromosuccinimide (NBS) as a promoter. In the presence of single NBS, a 64.2 % yield of HMF from fructose was obtained in N-methylpyrrolidone for 2 h. The effects of time, temperature and reaction media are discussed. It was concluded that the preliminary bromination of substrate could improve the generation of HMF compared to the direct dehydration process. Moreover, the HMF yield could be elevated to 79.6 and 82.3 % when FeCl3 and SnCl4 were used as the additives, respectively. Furthermore, the addition of CrCl3 facilitated the conversion pathway from glucose, sucrose, inulin, or cellulose to HMF. A 57.3, 68.2, 62.4, or 6.1 % yield of HMF was, respectively, obtained in the presence of CrCl3 and NBS under mild conditions, which will therefore generate a promising application strategy for biomass transformation.

Keywords

Dehydration Carbohydrates N-Bromosuccinimide 5-Hydroxymethylfurfural Biomass conversion 

Notes

Acknowledgment

We thank the financial support of the Natural Science Foundation of China (Project Number 21003093).

Supplementary material

11164_2012_837_MOESM1_ESM.doc (116 kb)
The HPLC measurement, HPLC and GC–MS spectra of product, NMR data of HMF can be obtained in the Supplementary Information. (DOC 116 kb)

References

  1. 1.
    G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106, 4044–4098 (2006)CrossRefGoogle Scholar
  2. 2.
    J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46, 7164–7183 (2007)CrossRefGoogle Scholar
  3. 3.
    G.W. Huber, A. Corma, Angew. Chem. Int. Ed. 46, 7184–7201 (2007)CrossRefGoogle Scholar
  4. 4.
    X. Tong, Y. Ma, Y. Li, Appl. Catal. A Gen. 385, 1–13 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411–2502 (2007)CrossRefGoogle Scholar
  6. 6.
    C.J. Moye, Rev. Pure Appl. Chem. 14, 161–170 (1964)Google Scholar
  7. 7.
    M.S. Feather, J.F. Harris, Adv. Carbohydr. Chem. Biochem. 28, 161–224 (1973)CrossRefGoogle Scholar
  8. 8.
    M.J. Antal, W.S.L. Mok, Carbohydr. Res. 199, 91–109 (1990)CrossRefGoogle Scholar
  9. 9.
    M.J. Antal, W.S. Mok, in Research in Thermochemistry and Biomass Conversion (Elsevier, New York, 1988) pp. 464–472Google Scholar
  10. 10.
    M. Bicker, J. Hirth, H. Vogel, Green Chem. 5, 280–284 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Roman-Leshkov, J.N. Chheda, J.A. Dumesic, Science 312, 1933–1937 (2006)CrossRefGoogle Scholar
  12. 12.
    T. Tuercke, S. Panic, S. Loebbecke, Chem. Eng. Technol. 32, 1815–1822 (2009)CrossRefGoogle Scholar
  13. 13.
    J.N. Chheda, Y. Roman-Leshkov, J.A. Dumesic, Green Chem. 9, 342–350 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger, B. König, Green Chem. 11, 1948–1954 (2009)CrossRefGoogle Scholar
  15. 15.
    A.A.M. Lapis, L.F. de Oliveira, B.A.D. Neto, J. Dupont, ChemSusChem 1, 759–762 (2008)CrossRefGoogle Scholar
  16. 16.
    L. Rigal, A. Gaset, Biomass 8, 267–276 (1985)CrossRefGoogle Scholar
  17. 17.
    X. Qi, M. Watanabe, T.M. Aida, R.L. Smith Jr, Green Chem. 10, 799–805 (2008)CrossRefGoogle Scholar
  18. 18.
    X. Qi, M. Watanabe, T.M. Aida, R.L. Smith Jr, Ind. Eng. Chem. Res. 47, 9234–9239 (2008)CrossRefGoogle Scholar
  19. 19.
    C. Moreau, R. Durand, C. Pourcheron, S. Razigade, Ind. Crops Prod. 3, 85–90 (1994)CrossRefGoogle Scholar
  20. 20.
    P. Rivalier, J. Duhamet, C. Moreau, R. Durand, Catal. Today 24, 165–171 (1995)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, Q. Wang, H. Xie, W. Liu, Z.K. Zhao, ChemSusChem 4, 131–138 (2011)CrossRefGoogle Scholar
  22. 22.
    G. Yong, Y.J. Zhang, Y. Ying, Angew. Chem. Int. Ed. 47, 9345–9348 (2008)CrossRefGoogle Scholar
  23. 23.
    X. Tong, M. Li, N. Yan, Y. Ma, P.J. Dyson, Y. Li, Catal. Today 175, 524–527 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Wang, L. Fu, X. Tong, Q. Yang, W. Zhang, Carbohydr. Res. 347, 182–185 (2012)CrossRefGoogle Scholar
  25. 25.
    M.A. Schwegler, P. Vinke, M. van der Eijk, H. van Bekkum, Appl. Catal. A Gen. 80, 41–57 (1992)CrossRefGoogle Scholar
  26. 26.
    C. Lansalot-Matras, C. Moreau, Catal. Commun. 4, 517–520 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316, 1597–1600 (2007)CrossRefGoogle Scholar
  28. 28.
    C. Moreau, A. Finiels, L. Vanoye, J. Mol. Catal. A Chem. 253, 165–169 (2006)CrossRefGoogle Scholar
  29. 29.
    X. Tong, Y. Li, ChemSusChem 3, 350–355 (2010)CrossRefGoogle Scholar
  30. 30.
    X. Tong, Y. Ma, Y. Li, Carbohydr. Res. 345, 1698–1701 (2010)CrossRefGoogle Scholar
  31. 31.
    B.F.M. Kuster, Starch/Stärke 42, 314–321 (1990)CrossRefGoogle Scholar
  32. 32.
    J. Lewkowski, ARKIVOC (i), 17–54 (2001)Google Scholar
  33. 33.
    N.S. Srinivasan, Tetrahedron 30, 419–425 (1974)CrossRefGoogle Scholar
  34. 34.
    R. Filler, Chem. Rev. 63, 21–43 (1963)CrossRefGoogle Scholar
  35. 35.
    K. Surendra, N.S. Krishnaveni, K.R. Rao, Tetrahedron Lett. 46, 4111–4113 (2005)CrossRefGoogle Scholar
  36. 36.
    J.B. Binder, R.T. Raines, J. Am. Chem. Soc. 131, 1979–1985 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringTianjin University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations