Research on Chemical Intermediates

, Volume 39, Issue 7, pp 3043–3048 | Cite as

Optical and kinetic studies of CdS:Cu nanoparticles

  • Raunak Kumar Tamrakar
  • D. P. Bisen


CdS:Cu nanoparticles were successfully synthesized by a coprecipitation method using mercaptoethanol as a capping agent. Thermoluminescence (TL) spectra of CdS:Cu nanoparticles were studied for different exposure time. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis spectrometry. XRD and SEM measurements showed that the size of the crystallites was in the range 8–17 nm. Optical measurements indicated a blue-shift in the absorption band edge upon Cu doping. The direct allowed bandgap of undoped and Cu-doped CdS nanoparticles was 2.53 and 2.64 eV, respectively. We also calculated the kinetic parameters for Cu-doped CdS nanoparticles from the TL glow curves measured at 254, 249, and 244 °C with variation of the ultra-violet (UV) exposure time. The glow curve shows general order kinetics, and its kinetic parameters are calculated.


Thermoluminescence Optical properties Kinetic parameters CdS:Cu nanoparticles 



The authors are grateful to BIT, Durg. This work was performed at UGC-DAE Consortium for Scientific Research, Indore.


  1. 1.
    J. Nanda, S. Sapra, D.D. Sarma, Chem. Mater. 12, 1018 (2000)CrossRefGoogle Scholar
  2. 2.
    R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994)CrossRefGoogle Scholar
  3. 3.
    M.A. Olshavsky, H.R. Allcock, Chem. Mater. 9, 1367 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Yang, J.H. Zeng, S.H. Yu, L. Yang, G.E. Zhou, Y.T. Qian, Formation process of CdS nanorods via solvothermal route. Chem. Mater. 12, 3259–3263 (2000)CrossRefGoogle Scholar
  5. 5.
    H.B. Chu, X.M. Li, G.D. Chen, W.W. Zhou, Y. Zhang, Z. Jin, J.J. Xu, Y. Li, Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst. Growth Des. 5, 1801–1806 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Zhang, L. Gao, Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir 19, 208–210 (2003)CrossRefGoogle Scholar
  7. 7.
    Y.D. Li, H.W. Liao, Y. Ding, Y.T. Qian, L. Yang, G.E. Zhou, Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 10, 2301–2303 (1998)CrossRefGoogle Scholar
  8. 8.
    C.W. Na, D.S. Han, D.S. Kim, Y.J. Kang, J.Y. Lee, J. Park, Photoluminescence of Cd1–xMnxS (x ≤ 0.3) nanowires. J. Phys. Chem. B 110, 6699–6704 (2006)CrossRefGoogle Scholar
  9. 9.
    K.T. Yong, Y. Sahoo, M.T. Swihart, P.N. Prasad, Shape control of CdS nanocrystals in one-pot synthesis. J. Phys. Chem. C 111, 2447–2458 (2007)CrossRefGoogle Scholar
  10. 10.
    X.J. Chen, H.F. Xu, N.S. Xu, F.H. Zhao, W.J. Lin, G. Lin, Y.L. Fu, Z.L. Huang, H.Z. Wang, M.M. Wu, Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg. Chem. 42, 3100–3106 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects and photophysical properties. J. Phys. Chem. 95, 525–532 (1991)CrossRefGoogle Scholar
  12. 12.
    Y. Yang, J.M. Huang, B. Yang, S.Y. Liu, J.C. Shen, Electroluminescence from ZnS/CdS nanocrystals/polymer composite. Synth. Met. 91, 347–359 (1997)CrossRefGoogle Scholar
  13. 13.
    J.H. Fendler, F.C. Meldrum, The colloid chemical approach to nanostructured materials. Adv. Mater. 7, 607–632 (1995)CrossRefGoogle Scholar
  14. 14.
    V. Nogriya, J.K. Dongre, M. Ramrakhiani, B.P. Chandra, Chalcogenide Lett. 5(12), 365–373 (2008)Google Scholar
  15. 15.
    D.P. Bisen, Sharma Ravi, N. Brahme, Tamrakar Raunak, Chalcogenide Lett. 6(9), 427–431 (2009)Google Scholar
  16. 16.
    R. Chen, Y. Kirsh, Analysis of Thermally Stimulated Processes (Pergamon, Oxford, 1981)Google Scholar
  17. 17.
    D.R. Vij (ed.), Thermoluminescent Materials (PTR Prentice-Hall, Englewood Cliffs, 1993)Google Scholar
  18. 18.
    S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985)CrossRefGoogle Scholar
  19. 19.
    M. Martini, F. Meinardi, Thermally stimulated luminescence: new perspectives in the study of defects in solids. La Rivista del Nuovo Cimento 20–4(8), 1–71 (1997)CrossRefGoogle Scholar
  20. 20.
    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific, Singapore, 1997)CrossRefGoogle Scholar
  21. 21.
    H. Nagbhushana, Ph.D. thesis, Bangalore University, Bangalore, 2003Google Scholar
  22. 22.
    R. Chen, Y. Krish, Analysis of Thermally Stimulated Processes (Pergamon, New York, 1981)Google Scholar
  23. 23.
    A. Guinier, X-ray Diffraction (Freeman, San Francisco, 1963)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Bhilai Institute of TechnologyDurgIndia
  2. 2.School of Studies in Physics and AstrophysicsPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations