Research on Chemical Intermediates

, Volume 39, Issue 7, pp 3023–3031 | Cite as

Kinetics of the reaction between 1,3-diphenylisobenzofuran and nitrogen dioxide studied by steady-state fluorescence

  • Krzysztof Żamojć
  • Dagmara Jacewicz
  • Magdalena Zdrowowicz
  • Lech Chmurzyński


1,3-Diphenylisobenzofuran (DPBF) is a fluorescent molecule which is believed to react highly specifically toward reactive oxygen species such as singlet oxygen (1O2), hydroxy (HO·), alkyloxy (RO·), and alkylperoxy (ROO·) radicals. In all cases the reaction product is 1,2-dibenzoylbenzene. In order to prove that DPBF gives the same product in contact with reactive nitrogen species, its reaction with nitrogen dioxide radical has been studied in 2,2,4-trimethylpentane using the steady-state fluorescence method and mass spectrometry. The progress of the studied reaction was measured by observation of changes in fluorescence intensity of DPBF after addition of nitrogen dioxide (NO2). The rate constants of DPBF fluorescence decay affected by NO2 have been determined. Experiments were conducted over the temperature range of 13–37 °C and for NO2 concentrations from 0.02 to 0.14 mmol dm−3. It has been found that the reaction between 1,3-diphenylisobenzofuran and nitrogen dioxide proceeds in two steps. The first step is a very rapid reaction whose rate could not be measured under established experimental conditions. The second step is slower. The reaction product was identified by registration of mass spectra. The probable reaction mechanism is proposed.


1,3-Diphenylisobenzofuran Nitrogen dioxide Fluorescence Kinetics Mechanism 



This study was financially supported by Polish Ministry of Science and Higher Education under grants N N204 136238 and DS/8232-4-0088-1.


  1. 1.
    L. Czako, T. Takacs, I. Varga, L. Tiszlavicz, D. Quy Hai, P. Hegyi, B. Matkovics, J. Lonovics, Dig. Dis. Sci. 43, 1770 (1998)CrossRefGoogle Scholar
  2. 2.
    H. Wiseman, B. Halliwell, Biochem. J. 313, 17 (1996)Google Scholar
  3. 3.
    P.S. Brookes, A.L. Levonen, S. Shiva, P. Sarti, V.M. Darley-Usmar, Free Radic. Biol. Med. 33, 755 (2002)CrossRefGoogle Scholar
  4. 4.
    B. Halliwell, Mutat. Res. 443, 37 (1999)CrossRefGoogle Scholar
  5. 5.
    L. Fialkow, Y. Wang, G.P. Downey, Free Radic. Biol. Med. 42, 153 (2007)CrossRefGoogle Scholar
  6. 6.
    H. Ischiropoulos, Arch. Biochem. Biophys. 356, 1 (1998)CrossRefGoogle Scholar
  7. 7.
    B. Halliwell, M.L. Hu, S. Louie, T.R. Duvall, B.K. Tarkington, P. Motchnik, C.E. Cross, FEBS Lett. 313, 62 (1992)CrossRefGoogle Scholar
  8. 8.
    B. Tu, A. Wallin, P. Moldeus, I.A. Cotgreave, Toxicology 96, 7 (1995)CrossRefGoogle Scholar
  9. 9.
    A. Dąbrowska, D. Jacewicz, A. Chylewska, M. Szkatuła, N. Knap, J. Kubasik-Juraniec, M. Woźniak, L. Chmurzyński, Curr. Pharm. Anal. 4, 183 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Dąbrowska, D. Jacewicz, A. Łapińska, B. Banecki, A. Figarski, M. Szkatuła, J. Lehman, J. Krajewski, J. Kubasik-Juraniec, M. Woźniak, L. Chmurzyński, Biochem. Biophys. Res. Commun. 326, 313 (2005)CrossRefGoogle Scholar
  11. 11.
    D. Jacewicz, A. Dąbrowska, A. Łapińska, A. Figarski, M. Woźniak, L. Chmurzyński, Anal. Biochem. 350, 256 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Gomes, E. Fernandes, J.L.F.C. Lima, J Fluoresc. 16, 119 (2006)CrossRefGoogle Scholar
  13. 13.
    P. Carloni, E. Damiani, L. Greci, P. Stipa, F. Tanfani, E. Tartaglini, M. Woźniak, Res. Chem. Intermed. 19, 395 (1993)CrossRefGoogle Scholar
  14. 14.
    T. Ohyashiki, M. Nunomura, T. Katoh, Biochim. Biophys. Acta 1421, 131 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Krzysztof Żamojć
    • 1
  • Dagmara Jacewicz
    • 1
  • Magdalena Zdrowowicz
    • 2
  • Lech Chmurzyński
    • 1
  1. 1.Department of General and Inorganic ChemistryFaculty of Chemistry, University of GdańskGdańskPoland
  2. 2.Chair of Theoretical Physical ChemistryFaculty of Chemistry, University of GdańskGdańskPoland

Personalised recommendations