Research on Chemical Intermediates

, Volume 39, Issue 6, pp 2723–2734 | Cite as

A highly selective colorimetric sensor to Fe3+ and Co2+ in aqueous solutions

  • Haiping Wang
  • Juan Li
  • Denghui Yao
  • Qun Gao
  • Fengqi Guo
  • Puhui Xie


Five aromatic azo dyes with hydroxyl groups (1–5) were designed and synthesized by coupling reactions. The relationships between structures of the compounds and the spectroscopic properties were investigated. The absorption spectra of these compounds upon titration with K+, Ca2+, Al3+, Mg2+, Ni2+, Mn2+, Cd2+, Cr3+, Fe3+, Cu2+, Zn2+, Co2+, Hg2+, and Pb2+ ions in neutral aqueous solutions were reported. The results are coincident with the calculation results using the density functional theory method. The high selectivity, excellent water solubility and simple synthetic process make 1-[(2-Hydroxyl)phenylazo]-2-naphthol (5) a potential sensor for sensing Fe3+ and Mn2+ with the naked eye. 1-[(2-hydroxyl)phenylazo]-2-naphthol-6-sulfonic acid (3) shows high selectivity for the colorimetric detection of Fe3+ and Co2+ among the tested metal ions. The detection limitations of 3 for determining Co2+ and Fe3+ were calculated to be 2.8 × 10−7 and 5.6 × 10−7 mol/L, respectively.


Azo compounds Colorimetric sensing Metal ions Water-soluble DFT calculations 



The authors are grateful for the financial support from National Natural Science Foundation of China (No. 21102037) and from the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of People’s Republic of China [No. 2008(890)].

Supplementary material

11164_2012_793_MOESM1_ESM.doc (7.9 mb)
Supplementary material 1 (DOC 8099 kb)


  1. 1.
    W. Liu, L. Xu, R. Sheng, P. Wang, H. Li, S. Wu, Org. Lett. 9, 3829–3832 (2007)CrossRefGoogle Scholar
  2. 2.
    C.A. Bell, S.V. Smith, M.R. Whittaker, A.K. Whittaker, L.R. Gahan, M.J. Monteiro, Adv. Mater. 18, 582–586 (2006)CrossRefGoogle Scholar
  3. 3.
    C.R. Goldsmith, S.J. Lippard, Inorg. Chem. 45, 555–561 (2006)CrossRefGoogle Scholar
  4. 4.
    X. Peng, Y. Wang, X. Tang, W. Liu, Dyes Pigments 91, 26–32 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Zhang, Y. Zhou, J. Yoon, Y. Kim, S. Kim, J. Kim, Org. Lett. 12, 3852–3855 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, Y. Xiao, X. Qian, Angew. Chem. Int. Edit. 47, 8025–8029 (2008)CrossRefGoogle Scholar
  7. 7.
    B.S. Gaylord, A.J. Heeger, G.C. Bazan, Proc. Natl. Acad. Sci. 99, 10954–10957 (2002)CrossRefGoogle Scholar
  8. 8.
    M.L. Ho, F.M. Hwang, P.N. Chen, Y.H. Hu, Y.M. Cheng, K.S. Chen et al., Org. Biomol. Chem. 4, 98–103 (2006)CrossRefGoogle Scholar
  9. 9.
    S.J. Kim, E.T. Kool, J. Am. Chem. Soc. 128, 6164–6171 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Tian, H. Li, Y. Luo, L. Wang, Y. Zhang, X. Sun, Langmuir 27, 874–877 (2011)CrossRefGoogle Scholar
  11. 11.
    H.J. Kim, J.E. Park, M.G. Cho, S. Ahn, S.K. Chang, Dyes Pigments. 84, 54–58 (2009)CrossRefGoogle Scholar
  12. 12.
    I. Miletto, A. Gilardino, P. Zamburlin, S. Dalmazzo, D. Lovisolo, G. Caputo et al., Dyes Pigments. 84, 121–127 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Yu, Z. Li, L. Wei, D. Wei, M. Tang, Org. Lett. 10, 5115–5118 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Jiang, Z. Guo, Coordin. Chem. Rev. 248, 205–229 (2004)Google Scholar
  15. 15.
    P. Xie, F. Guo, D. Li, X. Liu, L. Liu, J. Lumin. 131, 104–108 (2011)CrossRefGoogle Scholar
  16. 16.
    J.F. Callan, A.P. Silva, D.C. Magri, Tetrahedron 61, 8551–8588 (2005)CrossRefGoogle Scholar
  17. 17.
    D.H. Lee, K. Hee, J. Hong, Org. Lett. 3, 5–8 (2001)CrossRefGoogle Scholar
  18. 18.
    D.H. Lee, J.H. Im, S.U. Son, J. Am. Chem. Soc. 25, 7752–7753 (2003)CrossRefGoogle Scholar
  19. 19.
    F. Wu, X. Tan, Y. Wu, Y. Zhao, Spectrochim. Acta 65, 925–929 (2006)CrossRefGoogle Scholar
  20. 20.
    T.S. Lee, C. Yang, Synth. Met. 117, 135–136 (2001)CrossRefGoogle Scholar
  21. 21.
    H. Dincalp, F. Toker, I. Durucasu, N. Avcıbasi, S. Icli, Dyes Pigments. 75, 11–24 (2007)CrossRefGoogle Scholar
  22. 22.
    E.E. Nesterov, J. Skoch, B.T. Hyman, W.E. Klunk, B.J. Bacskai, T.M. Swager, Angew. Chem. Int. Ed. 44, 5452–5456 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Caballero, A. Tarraga, M.D. Velasco, P. Molina, Dalton Trans. 11, 1390–1398 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Xie, F. Guo, W. Wang, X. Liu, Chem. Pap. 64, 723–728 (2010)CrossRefGoogle Scholar
  25. 25.
    P. Xie, F. Guo, C. Li, Y. Xiao, Can. J. Chem. 89, 1364–1369 (2011)CrossRefGoogle Scholar
  26. 26.
    J.M. Griffing, R.C. Elderfield, J. Org. Chem. 11, 123–135 (1946)CrossRefGoogle Scholar
  27. 27.
    S.N. Chakravarti, V. Pasupati, J. Chem. Soc. 1859–1862 (1937). doi: 10.1039/JR9370001859
  28. 28.
    G. Hallas, A.D. Towns, Dyes Pigm. 35, 219–237 (1997)CrossRefGoogle Scholar
  29. 29.
    K. Ogawa, F. Guo, K.S. Schanze, J. Photochem. Photobiol. A. 207, 79–85 (2009)CrossRefGoogle Scholar
  30. 30.
    F.S. Manas, L.X. Chen, Chem. Phys. Lett. 331, 299–307 (2000)CrossRefGoogle Scholar
  31. 31.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al. (eds.), Gaussian 03 revision B05 (Gaussian Inc, Pittsburgh, 2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.College of SciencesHenan Agricultural UniversityZhengzhouPeople’s Republic of China

Personalised recommendations