Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 6, pp 2391–2399 | Cite as

Efficient solvent-free synthesis of tertiary propargylic alcohols from arylacetylenes and ketones promoted by tert-BuOK

  • Shufeng Chen
  • Fang Yuan
  • Haiying Zhao
  • Baoguo Li
Article

Abstract

A mild and efficient method for the alkynylation of arylacetylenes with ketones promoted by tert-BuOK under solvent-free conditions was developed. The present green synthesis was applicable to many kinds of aromatic and aliphatic ketones providing good to excellent yields of tertiary propargylic alcohols.

Graphical abstract

A mild and efficient method for the alkynylation of arylacetylenes with ketones promoted by tert-BuOK under solvent-free conditions was developed. The present green synthesis was applicable to many kinds of aromatic and aliphatic ketones providing good to excellent yields of tertiary propargylic alcohols.

Keywords

Solvent-free Tertiary propargylic alcohols Alkynylation Potassium tert-butoxide 

Notes

Acknowledgments

The project is generously supported by National Natural Science Foundation of China (Nos. 20902044 and 21102068), Natural Science Foundation of Inner Mongolia of China (No. 2009BS0204) and “Chunhui” Program from Ministry of Education of China (Z2009-1-01003).

References

  1. 1.
    P.T. Anastas, T.C. Williamson, Green Chemistry: Designing Chemistry for the Environment. (ACS symposium series 626, Washington, DC, 1996)Google Scholar
  2. 2.
    A. Lapkin, D.J.C. Constable, Green Chemistry Metrics: Measuring and Monitoring Sustainable Processes (Wiley-Blackwell, Chichester, 2009)Google Scholar
  3. 3.
    S.K. Sharma, A. Mudhoo, Green Chemistry for Environmental Sustainability (CRC, Boca Raton, 2011)Google Scholar
  4. 4.
    P.T. Anastas, L.G. Heine, T.C. Williamson, Green Chemical Syntheses and Processes. (ACS symposium series 767, Washington, DC, 2000)Google Scholar
  5. 5.
    P. Tundo, V. Esposito, Green Chemical Reactions (Springer, Dordrecht, 2008)CrossRefGoogle Scholar
  6. 6.
    K. Tanaka, Solvent-Free Organic Synthesis, 2nd edn. (Wiley-VCH, Weinheim, 2009)Google Scholar
  7. 7.
    J.O. Metzger, Angew. Chem. Int. Ed. 37, 2975 (1998)CrossRefGoogle Scholar
  8. 8.
    R.S. Varma, Green Chem. 1, 43 (1999)CrossRefGoogle Scholar
  9. 9.
    K. Tanaka, F. Toda, Chem. Rev. 100, 1025 (2000)CrossRefGoogle Scholar
  10. 10.
    G.W.V. Cave, C.L. Raston, J.L. Scott, Chem. Commun. 2159 (2001)Google Scholar
  11. 11.
    P.J. Walsh, H. Li, C.A. de Parrodi, Chem. Rev. 107, 2503 (2007)CrossRefGoogle Scholar
  12. 12.
    M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Chem. Rev. 109, 4140 (2009)CrossRefGoogle Scholar
  13. 13.
    P.G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 4095 (2004) Google Scholar
  14. 14.
    P.J. Stang, F. Diederich, Modern Acetylene Chemistry (VCH, Weinheim, 1995)CrossRefGoogle Scholar
  15. 15.
    L. Pu, Tetrahedron 59, 9873 (2003)CrossRefGoogle Scholar
  16. 16.
    B.M. Trost, A.H. Weiss, Adv. Synth. Catal. 351, 963 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Tejedor, S. Lopez-Tosco, F. Cruz-Acosta, G. Mendez-Abt, F. Garcia-Tellado, Angew. Chem. Int. Ed. 48, 2090 (2009)CrossRefGoogle Scholar
  18. 18.
    C.H. Ding, X.L. Hou, Chem. Rev. 111, 1914 (2011)CrossRefGoogle Scholar
  19. 19.
    D.E. Frantz, R. Fassler, C.S. Tomooka, E.M. Carreira, Acc. Chem. Res. 33, 373 (2000)CrossRefGoogle Scholar
  20. 20.
    G. Lu, Y.M. Li, A.S.C. Chan, Coord. Chem. Rev. 249, 1736 (2005)CrossRefGoogle Scholar
  21. 21.
    P.G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 5969 (2007)Google Scholar
  22. 22.
    M. Hatano, T. Miyamoto, K. Ishihara, Synthesis 1647 (2008)Google Scholar
  23. 23.
    K. Tanaka, K. Kukita, T. Ichibakase, S. Kotani, M. Nakajima, Chem. Commun. 5614 (2011)Google Scholar
  24. 24.
    G.W. Zhang, W. Meng, H. Ma, J. Nie, W.Q. Zhang, J.A. Ma, Angew. Chem. Int. Ed. 50, 3538 (2011)CrossRefGoogle Scholar
  25. 25.
    T. Bauer, S. Smolinski, P. Gawel, J. Jurczak, Tetrahedron Lett. 52, 4882 (2011)Google Scholar
  26. 26.
    K. Aikawa, Y. Hioki, K. Mikami, Org. Lett. 12, 5713 (2010)CrossRefGoogle Scholar
  27. 27.
    F.Q. Li, S. Zhong, G. Liu, A.S.C. Chan, Adv. Synth. Catal. 351, 1955 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Harada, R. Takita, T. Ohshima, S. Matsunaga, M. Shibasaki, Chem. Commun. 948 (2007)Google Scholar
  29. 29.
    J. Ekstrom, A.B. Zaitsev, H. Adolfsson, Synlett 885 (2006)Google Scholar
  30. 30.
    J.H. Babler, V.P. Liptak, N. Phan, J. Org. Chem. 61, 416 (1996)CrossRefGoogle Scholar
  31. 31.
    D. Tzalis, P. Knochel, Angew. Chem. Int. Ed. 38, 1463 (1999)CrossRefGoogle Scholar
  32. 32.
    T. Ishikawa, T. Mizuta, K. Hagiwara, T. Aikawa, T. Kudo, S. Saito, J. Org. Chem. 68, 3702 (2003)CrossRefGoogle Scholar
  33. 33.
    T. Imahori, C. Hori, Y. Kondo, Adv. Synth. Catal. 346, 1090 (2004)CrossRefGoogle Scholar
  34. 34.
    T. Weil, P.R. Schreiner, Eur. J. Org. Chem. 2213 (2005)Google Scholar
  35. 35.
    H. Miyamoto, S. Yasaka, K. Tanaka, Bull. Chem. Soc. Jpn. 74, 185 (2001)CrossRefGoogle Scholar
  36. 36.
    T.W. Dong, G.W. Wang, L. Wang, Tetrahedron 64, 10148 (2008)CrossRefGoogle Scholar
  37. 37.
    J.F. Liu, J. Lin, L. Song, Tetrahedron Lett. 53, 2160 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Shufeng Chen
    • 1
  • Fang Yuan
    • 1
  • Haiying Zhao
    • 1
  • Baoguo Li
    • 1
  1. 1.College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotChina

Personalised recommendations