Research on Chemical Intermediates

, Volume 39, Issue 5, pp 2049–2062 | Cite as

Evaluation of the corrosion inhibition effect of micro/nanocapsulated polymeric coatings: a comparative study by use of EIS and Tafel experiments and the area under the Bode plot

  • Masoumeh Kouhi
  • Ali Mohebbi
  • Mohammad Mirzaei


In this paper we propose an approach for ranking self-healing polymeric coatings containing micro/nanocapsules in order of corrosion-protection effectiveness on exposure to 3.5 % (w/w) NaCl solution. The results indicated that development of electrochemical cells was inhibited by the active components of the ruptured embedded inhibitor micro/nanocapsules which were released into a scratch inflicted in the polymeric coating on steel surface. Undamaged surface film of test and control specimens exposed to the solution had excellent corrosion-inhibition performance, as reflected by results from both electrochemical impedance spectroscopy and polarization tests. Moreover, three coatings containing capsules synthesized at three different agitation rates with the same thickness were compared to determine the optimum rate. For the optimum rate the optimum thickness was then determined. The areas under Bode plots were determined and used as useful values for evaluation and ranking the coatings. It was found that the area under the Bode plot is a good criterion for evaluating polymeric coating degradation during immersion. There was good agreement between the results of this work and those from electrochemical tests.


Micro/nanocapsule Electrochemical impedance spectroscopy (EIS) Tafel polarization Epoxy Coating Corrosion 



The authors wish to gratefully acknowledge Dr Danaie and Dr Zare, for their valuable scientific guidance, and the personnel of the chemistry, physics, paint, and corrosion laboratories, for their endeavors and coordination. Eng. Hosseini is also kindly acknowledged for his assistance.


  1. 1.
    C. Challener, JCT. 50–55 (2005)Google Scholar
  2. 2.
    K. Jud, H. Kausch, J. Williams, Mater. Sci. 16, 204–210 (1981)Google Scholar
  3. 3.
    D.Y. Wu, S. Meure, D. Solomon, Prog. Polym. Sci. 33, 479–522 (2008)CrossRefGoogle Scholar
  4. 4.
    R.P. Wool, K.M. O’Connor, Appl. Phys. 52, 5953–5963 (1981)CrossRefGoogle Scholar
  5. 5.
    S.J. Kalista, T.C. Ward, R Soc: Interface 4, 405–411 (2007)CrossRefGoogle Scholar
  6. 6.
    X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S.R. Nutt, K. Sheran, F. Wudl, Science 295, 1698–1702 (2002)CrossRefGoogle Scholar
  7. 7.
    S.K. Ghosh (ed.), Self-healing Materials Fundamentals, Design Strategies, and Applications (Weinheim, Germany, 2009)Google Scholar
  8. 8.
    P.B. Deasy, Microencapsulation and Related Drug Processes (Marcel Dekker, New York, 1984), pp. 119–219Google Scholar
  9. 9.
    T.M.S. Chang, Biotechnol. Annu. Rev. 1, 267–295 (1995)CrossRefGoogle Scholar
  10. 10.
    E.N. Brown, M.R. Kessler, N.R. Sottos, S.R. White, Microencapsulation 20(6), 719–730 (2003)Google Scholar
  11. 11.
    M. Samadzadeh, S. HatamiBoura, M. Peikari, S.M. Kasiriha, A. Ashrafi, Prog. Org. Coat. 68, 159–164 (2010)CrossRefGoogle Scholar
  12. 12.
    S.R. White, N.R. Sottos, J.S. Moore, P.H. Geubelle, M.R. Kessler, E.N. Brown, Nature 409, 794–797 (2001)CrossRefGoogle Scholar
  13. 13.
    A.C. Jackson, J.A. Bartelt, K. Marczewski, N.R. Sottos, P.V. Braun, Macromol. Rapid Commun. 32(1), 82–87 (2011)CrossRefGoogle Scholar
  14. 14.
    J.K. Lee, S.J. Hong, X. Liu, S.H. Yoon, Macromol. Res. 12, 478–483 (2004)CrossRefGoogle Scholar
  15. 15.
    X. Liu, J.K. Lee, S.H. Yoon, M.R. Kessler, Appl. Polym. Sci. 101, 1266–1272 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Li, G.Z. Liang, X.J. Q, J. Gou, L. Li, Polym. Degrad. Stab. 91, 2300–2306 (2006)Google Scholar
  17. 17.
    L. Yuan, G.Z. Liang, J.Q. Xie, L. Li, J. Guo, Polymer 47, 5338–5349 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Cosco, V. Ambrogi, P. Musto, C. Carfagna, Macromol. Symp. 234, 184–192 (2006)CrossRefGoogle Scholar
  19. 19.
    D. Jung, A. Hegeman, N.R. Sottos, P.H. Geubelle, S.R. White, in Composites and functionally graded materials, ASME International Mechanical Engineering Congress and Exposition (ASME, Dallas, 1997), pp. 265–275Google Scholar
  20. 20.
    S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Adv. Mater. 18(8), 997–1000 (2006)CrossRefGoogle Scholar
  21. 21.
    C. Suryanarayana, K.C. Raob, D. Kumar, J. Prog. Org. Coat. 63, 72–78 (2008)CrossRefGoogle Scholar
  22. 22.
    W.A. Caspari, Z. Phys. Chem. 30, 89 (1899)Google Scholar
  23. 23.
    J. Tafel, Z. Phys. Chem. 50, 641 (1905)Google Scholar
  24. 24.
    J.A.V. Butler, Trans. Faraday Soc. 19, 734 (1924)Google Scholar
  25. 25.
    T. Erdey-Gruz, M.Z. Volmer, Phys. Chem. 150A, 203 (1930)Google Scholar
  26. 26.
    C. Wagner, W.Z. Traud, Elektrochem 44, 391 (1938)Google Scholar
  27. 27.
    M. Stern, A.L. Geary, Electrochem. Soc. 104, 56 (1957)Google Scholar
  28. 28.
    F. Deflorian, S. Rossi, Electrochim. Acta 51, 1736–1744 (2006)Google Scholar
  29. 29.
    E. Akbarinezhad, J. NeshatiF, F. Rezaei, Surf. Eng. 5, 380–383 (2007)Google Scholar
  30. 30.
    J.M. McIntyre, Q. Pham Ha, Prog. Org. Coat. 27, 201–207 (1996)Google Scholar
  31. 31.
    H. Yasuda, Q.S. Yu, M. Chen, Prog. Org. Coat. 41, 273–279 (2001)Google Scholar
  32. 32.
    M. Zubielewicz, W. Gnot, Prog. Org. Coat. 49, 358–371 (2004)Google Scholar
  33. 33.
    R.L. De Rosa, D.A. Earl, G.P. Bierwagen, Corros. Sci. 44, 1607–1620 (2002)Google Scholar
  34. 34.
    Z.M. Gao, S.Z. Song, Y.H. Xu, Chin. J. Corros. Prot. 25, 106–109 (2005)Google Scholar
  35. 35.
    X. Zhao, J. Wang, Y. Wang, T. Kong, L. Zhong, W. Zhang, Electrochem. Commun. 9, 1394–1399 (2007)Google Scholar
  36. 36.
    F. Mansfeld, Electrochim. Acta 35, 1533–1544 (1990)Google Scholar
  37. 37.
    E. Akbarinezhad, M. Bahremandi, H.R. Faridi, F. Rezaei, Corros. Sci. 51, 356–363 (2009)Google Scholar
  38. 38.
    C.L. Mangun, A.C. Mader, N.R. Sottos, S.R. White, Chem. Polym. 51, 4063–4068 (2010)Google Scholar
  39. 39.
    C. Fan, X. Zhou, Colloids Surf. A 363, 49–55 (2010)Google Scholar
  40. 40.
    D. Loveday, P. Peterson, in JCT Coatings Technology, (Gamry Instruments, Inc., Willow Grove, 2004 and 2005)Google Scholar
  41. 41.
    ASTMG. Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. ASTM G 106-89 (re-approved 1994), pp. 433–441 (1994)Google Scholar
  42. 42.
    N.K. Mehta, M.N. Bogere, Org. Coat. 64, 419–428 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Masoumeh Kouhi
    • 1
    • 2
    • 3
  • Ali Mohebbi
    • 1
  • Mohammad Mirzaei
    • 4
  1. 1.Department of Chemical EngineeringShahid Bahonar University of KermanKermanIran
  2. 2.International Center for ScienceHigh Technology and Environmental ScienceMahanIran
  3. 3.Petroleum University of TechnologyAbadanIran
  4. 4.Department of ChemistryShahid Bahonar University of KermanKermanIran

Personalised recommendations