Research on Chemical Intermediates

, Volume 39, Issue 3, pp 1447–1457 | Cite as

Preparation, characterization and photocatalytic activity of metalloporphyrins-modified TiO2 composites



Three new Cu(II), Zn(II), Co(II) 5,15-di (4-hydroxyphenyl)-10, 20-diphenyl-porphyrin (CuDHPP, ZnDHPP, CoDHPP) and the corresponding metalloporphyrins–TiO2 photocatalysts CuDHPP–TiO2, ZnDHPP–TiO2, CoDHPP–TiO2 were synthesized and characterized by SEM, XRD, FT-IR, and DRS. The results revealed that the metalloporphyrins impregnated onto the surface of TiO2 did not change the phase composition and particle sizes of TiO2 samples, but increased the photocatalytic efficiency. In addition, photoluminescence study showed that the three photocatalysts could successfully increase the separation efficiency of the photoinduced electron and hole. The photodegrading 4-NP experiments indicated that the three photocatalysts greatly enhanced the photocatalytic activity of bare TiO2, and the photocatalytic activity of CuDHPP–TiO2 was the highest. Moreover, the possible mechanism for the photodegradation of 4-NP was also proposed.


Metalloporphyrins TiO2 Photocatalytic degradation 4-Nitrophenol Mechanism 



This work was financially supported by National Nature Science Foundation of China (No. 20971103) and the International Cooperation Project of Shaanxi province (No. 2008KW–33).


  1. 1.
    M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  2. 2.
    J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka, H. Serpone, Environ. Sci. Technol. 32, 2394 (1998)CrossRefGoogle Scholar
  3. 3.
    US Environmental Protection Agency, 4-nitrophenol, health and environmental effects profile no. 135, Washington, DC (1980)Google Scholar
  4. 4.
    W.B Zhang, J.L. Chang, J.H. Chen, F. Xu, F. Wang, K. Jiang, Z.Y. Gao, Res. Chem. Intermed (2012). doi:  10.1007/s11164-012-0516-y
  5. 5.
    A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. 22, 417 (1993)CrossRefGoogle Scholar
  6. 6.
    D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 38, 1999 (2009)CrossRefGoogle Scholar
  7. 7.
    X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  8. 8.
    H.S. Jie, H.B. Lee, K.H. Chae, M.Y. Huh, M. Matsuoka, S.H. Cho, J.K. Park, Res. Chem. Intermed. 38, 1171 (2012)CrossRefGoogle Scholar
  9. 9.
    N. Serpone, A.V. Emeline, J. Phys. Chem. Lett. 3, 673 (2012)CrossRefGoogle Scholar
  10. 10.
    H.Y. Chen, H.X. Jin, B. Dong, Res. Chem. Intermed (2012). doi:  10.1007/s11164-012-0549-2
  11. 11.
    T.T. Isimjan, H. Kazemian, S. Rohani, K. Ray Ajay, J. Mater. Chem. 20, 10241 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Yang, H. Zhong, C.X. Tian, Res. Chem. Intermed. 37, 91 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Mele, R. del Sole, G. Vasapollo, E. García–López, L. Palmisano, J. Li, R. Słota, G. Dyrda, Res. Chem. Intermed. 33, 433 (2007)CrossRefGoogle Scholar
  14. 14.
    A.A. Ismail, D.W. Bahnemann, ChemSusChem. 3, 1057 (2010)CrossRefGoogle Scholar
  15. 15.
    M.L. Marin, L. Santos–Juanes, A. Arques, A.M. Amat, M.A. Miranda, Chem. Rev. 112, 1710 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Li, W.J. Dong, S.M. Sun, Z. Shi, S.H. Feng, J. Phys. Chem. C 112, 14878 (2008)CrossRefGoogle Scholar
  17. 17.
    X.Q. Li, L.F. Liu, S.Z. Kang, J. Mu, G.D. Li, Appl. Surf. Sci. 257, 5950 (2011)CrossRefGoogle Scholar
  18. 18.
    W.Y. Sun, J. Li, G.Y. Yao, F.X. Zhang, J.L. Wang, Appl. Surf. Sci. 258, 940 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Ritterskamp, A. Kuklya, M.A. Wüstkamp, K. Kerpen, C. Weidenthaler, M. Demuth, Angew. Chem. Int. Ed. 46, 7770 (2007)CrossRefGoogle Scholar
  20. 20.
    J.K. Xie, N.Q. Yan, S.J. Yang, Z. Qu, W.M. Chen, W.Q. Zhang, K.H. Li, P. Liu, J.P. Jia, Res. Chem. Intermed (2012). doi:  10.1007/s11164-012-0568-z
  21. 21.
    X.Q. Li, L.F. Liu, S.Z. Kang, J. Mu, G.D. Li, Catal. Commun. 17, 136 (2012)CrossRefGoogle Scholar
  22. 22.
    T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, Dalton Trans. 40, 6751 (2011)CrossRefGoogle Scholar
  23. 23.
    Y.X. Wang, X.Y. Li, G. Lu, X. Quan, G.H. Chen, J. Phys. Chem. C 112, 7332 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001)CrossRefGoogle Scholar
  25. 25.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17, 2596 (2005)CrossRefGoogle Scholar
  26. 26.
    R. Zanella, V. Rodríguez–González, Y. Arzola, A. Moreno–Rodriguez, ACS Catal. 2, 1 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110, 7635 (2006)CrossRefGoogle Scholar
  28. 28.
    J.X. Yuan, Q. Wu, P. Zhang, J.H. Yao, T. He, Y.A. Cao, Environ. Sci. Technol. 46, 2330 (2012)CrossRefGoogle Scholar
  29. 29.
    H.S. Hilal, L.Z. Majjad, N. Zaatar, A. El–Hamouz, Solid State Sci. 9, 9 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003)CrossRefGoogle Scholar
  31. 31.
    G. Mele, R. Del Sole, G. Vasapollo, E. García–López, L. Palmisano, M. Schiavello, J. Catal. 217, 334 (2003)Google Scholar
  32. 32.
    W.J. Sun, J. Li, G.P. Yao, M. Jiang, F.X. Zhang, Catal. Commun. 16, 90 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wanjun Sun
    • 1
  • Jun Li
    • 1
  • Xiangfei Lü
    • 1
    • 2
  • Fengxing Zhang
    • 1
  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Department of Environmental Engineering, College of Resource and EnvironmentShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations