Research on Chemical Intermediates

, Volume 39, Issue 3, pp 1021–1035 | Cite as

The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates

  • Hongbo Zhang
  • Kan Li
  • Tonghua Sun
  • Jingping Jia
  • Xueli Yang
  • Yafei Shen
  • Jun Wang
  • Ziyang Lou


As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO x and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO x , O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed.


VOCs Styrene Dielectric barrier discharge Intermediates 



This work was financial supported by National Key Technology R&D Program (2010BAK69B24), Shanghai Science and Technology Committee (10dz0583205) and Natural Science Foundation of China (Project No. 41173108).


  1. 1.
    C. Garcia-Diego, J. Cuellar, Chem. Eng. J. 139, 1 (2008)CrossRefGoogle Scholar
  2. 2.
    C.L. Huang, H.Y. Zhang, Z.Y. Sun, Y.F. Zhao, S. Chen, R.T. Tao, Z.M. Liu, J. Colloid Interface Sci. 364, 2 (2011)Google Scholar
  3. 3.
    R. Rosiah, N.M. Mahmoud, S. Hamdani, Chem. Eng. J. 132, 1–3 (2007)CrossRefGoogle Scholar
  4. 4.
    T.C. Morata, M. Sliwinska-Kowalska, A.C. Johnson, J. Starck, K. Pawlas, E. Zamyslowska-Szmytke, P. Nylen, E. Toppila, E. Krieg, N. Pawlas, D. Prasher, Int. J. Audiol. 50, 10 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Wongvijitsuk, P. Navasumrit, U. Vattanasit, V. Parnlob, M. Ruchirawat, Int. J. Hyg. Environ. Health 214, 2 (2011)CrossRefGoogle Scholar
  6. 6.
    P.E. Russell, B. Ellis, D.M. Abrams, in Land Reclamation: Extending the Boundaries, ed. by H.M. Moore, H.R. Fox, S. Elliott (Swets & Zeitlinger, Lisse, 2003), p. 351Google Scholar
  7. 7.
    J.G. Bendall, J. Food Prot. 70, 4 (2007)Google Scholar
  8. 8.
    C.L. Chang, H. Bai, S.J. Lu, Plasma Chem. Plasma Process. 25, 6 (2005)Google Scholar
  9. 9.
    F. Adam, A. Lqbal, Chem. Eng. J. 160, 2 (2010)Google Scholar
  10. 10.
    B. Boulinguiez, P. Le Cloirec, Energy Fuels 24, 9 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Wang, X.Q. Jia, J.P. Wen, Chem. Eng. J. 159, 1–3 (2010)CrossRefGoogle Scholar
  12. 12.
    H.M. Lee, M.B. Chang, Plasma Chem. Plasma Process. 23, 3 (2003)Google Scholar
  13. 13.
    M.B. Chang, S.J. Yu, Environ. Sci. Technol. 35, 8 (2001)Google Scholar
  14. 14.
    J.H. Niu, A.M. Zhu, C. Shi, L.L. Shi, Z.M. Song, Y. Xu, Chin. J. Catal. 26, 9 (2005)Google Scholar
  15. 15.
    H.B. Ma, P. Chen, M.L. Zhang, X.Y. Lin, R. Ruan, Plasma Chem. Plasma Process. 22, 2 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Nasonova, D.J. Kim, W.S. Kim, K.S. Kim, Res. Chem. Intermed. 34, 4 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Chen, J.T. Yang, H. Pan, Q.F. Su, Y.M. Liu, Y. Shi, J. Hazard. Mater. 177, 1–3 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.H. Bai, J.R. Chen, X.Y. Li, C.H. Zhang, Rev. Environ. Contam. T (2009). doi: 10.1007/978-1-4419-0032-6_4 Google Scholar
  19. 19.
    J. Meichsner, Lect. Notes phys. (2005). doi: 10.1007/11360360_5 Google Scholar
  20. 20.
    C.H. Subrahmanyam, M. Magureanu, A. Renken, L. Kiwi-Minsker, Appl. Catal. B 65, 1–2 (2006)CrossRefGoogle Scholar
  21. 21.
    F. Holzer, U. Roland, F.D. Kopinke, Appl. Catal. B 38, 3 (2002)Google Scholar
  22. 22.
    X.M. Zhang, J.B. Zhu, X.Y. Li, Z. Liu, X.W. Ren, K.P. Yan, IEEE Trans. Plasma Sci. 39, 6 (2011)Google Scholar
  23. 23.
    Q. Tang, W.J. Jiang, Y. Cheng, S. Lin, T.M. Lim, J. Xiong, Ind. Eng. Chem. Res. 50, 17 (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hongbo Zhang
    • 1
  • Kan Li
    • 1
  • Tonghua Sun
    • 1
  • Jingping Jia
    • 1
  • Xueli Yang
    • 1
  • Yafei Shen
    • 1
  • Jun Wang
    • 1
  • Ziyang Lou
    • 1
  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations