Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 1, pp 177–183 | Cite as

Syntheses and electrochemical properties of novel aminopyrimidinone derivatives as a new class of abasic-site binders

  • Junya Chiba
  • Yasuhiro Doi
  • Masahiko Inouye
Article

Abstract

We describe syntheses and electrochemical properties of a new class of aminopyrimidinone derivatives: 2-amino-4-(3′,4′-dimethoxyphenyl)-6-pyrimidinone, 2-amino-4-(3′,4′-dihydroxyphenyl)-6-pyrimidinone, 2,4-diamino-5-(3′,4′-dimethoxyphenyl)-6-pyrimidinone, 2,4-diamino-5-(3′,4′-dihydroxyphenyl)-6-pyrimidinone, and 4-amino-5-(3′,4′-dihydroxyphenyl)-2,6-pyrimidinione, three of which possess a catechol unit as an oxidation-active moiety for developing electrochemically detectable abasic-site binders. These compounds were synthesized via a pyrimidine-ring forming reaction with guanidine. Cyclic voltammetry measurements revealed that the catechol-bearing derivatives showed oxidation potentials lower than that of DNA, indicating that they satisfied the requirements for the purpose.

Graphical Abstract

Keywords

Electrochemistry Abasic site Aminopyrimidinone Catechol 

References

  1. 1.
    J. Lhomme, J.-F. Constant, M. Demeunynck, Biopolymers 52, 65 (1999)CrossRefGoogle Scholar
  2. 2.
    E.C. Friedberg, Nature 421, 436 (2003)CrossRefGoogle Scholar
  3. 3.
    P.J. Berti, J.A.B. McCann, Chem. Rev. 106, 506 (2006)CrossRefGoogle Scholar
  4. 4.
    J.H.J. Hoeijmakers, Nature 411, 366 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Shao, K. Morita, Q. Dai, S. Nishizawa, N. Teramae, Electrochem. Commun. 10, 438 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Li, Y. Sato, S. Nishizawa, T. Seino, K. Nakamura, N. Teramae, J. Am. Chem. Soc. 131, 2448 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Xu, Y. Sato, S. Nishizawa, N. Teramae, Biosens. Bioelectron. 26, 4733 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Sato, S. Nishizawa, N. Teramae, Chem. Eur. J. 17, 11650 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Abe, M. Takase, Y. Doi, S. Matsumoto, M. Furusyo, M. Inouye, Eur. J. Org. Chem. 2005, 2931 (2005)Google Scholar
  10. 10.
    Y. Doi, J. Chiba, T. Morikawa, M. Inouye, J. Am. Chem. Soc. 130, 8762 (2008)CrossRefGoogle Scholar
  11. 11.
    S.A. Benner, Acc. Chem. Res. 37, 784 (2004)CrossRefGoogle Scholar
  12. 12.
    R.P. Singh, Analyst 136, 1216 (2011)CrossRefGoogle Scholar
  13. 13.
    B.P. López, A. Merkoçi, Analyst 134, 60 (2009)CrossRefGoogle Scholar
  14. 14.
    V. Bardot, P. Besse, Y. Gelas-Miahle, R. Remuson, H. Veschamber, Tetrahedron 7, 1077 (1996)CrossRefGoogle Scholar
  15. 15.
    M.W. Rathke, J. Deitch, Tetrahedron Lett. 31, 2953 (1971)CrossRefGoogle Scholar
  16. 16.
    M.C. Honan, A. Balasuryia, T.M. Cresp, J. Org. Chem. 50, 4326 (1985)CrossRefGoogle Scholar
  17. 17.
    J. Chiba, Y. Doi, M. Inouye, Heterocycles 79, 411 (2009)CrossRefGoogle Scholar
  18. 18.
    E.E. Ferapontova, E. Dominguez, Electroanalysis 15, 629 (2003)CrossRefGoogle Scholar
  19. 19.
    I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi, H. Sugiyama, J. Am. Chem. Soc. 120, 12686 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan

Personalised recommendations