Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 1, pp 49–59 | Cite as

Characterization of tetraene intermediates formed in the [3+2]-photocycloaddition of 1,4-dicyano-6-methylnaphthalene with styrene

  • Hideo Shiratori
  • Yuki Nogami
  • Yasuo Kubo
Article
  • 68 Downloads

Abstract

The early stages of the [3+2]-photocycloaddition of 1,4-dicyano-6-methylnaphthalene (6) with styrene (7) were investigated by UV–visible absorption and 1H NMR spectroscopy. An intermediate species was detected and characterized as 8-methyl-2-phenyl-1,2,2a,8-tetrahydroacenaphthylene-2a,5-dicarbonitrile (9). Computational studies explained the regioselective [3+2]-photocycloaddition at the 4,5-position of 6 to form zwitterion 8, and subsequent thermal transformation to form 9.

Keywords

[3+2]-Photocycloaddition 1,4-Dicyano-6-methylnaphthalene Tetraene intermediate Regioselectivity Computational studies 

References

  1. 1.
    J.J. McCullough, Chem. Rev. 87, 811–860 (1987)CrossRefGoogle Scholar
  2. 2.
    J. Malkin, Photophysical and Photochemical Properties of Aromatic Compounds (CRC Press, Boca Raton, 1992)Google Scholar
  3. 3.
    I.A. Akhtar, J.J. McCullough, J. Org. Chem. 46, 1447–1450 (1981)CrossRefGoogle Scholar
  4. 4.
    J.J. McCullough, W.K. MacInnis, C.J.L. Lock, R. Faggiani, J. Am. Chem. Soc. 104, 4644 (1982)CrossRefGoogle Scholar
  5. 5.
    H.D. Scharf, H. Leismann, W. Erb, H.W. Gaindetzka, J. Aretz, Pure Appl. Chem. 41, 581–600 (1975)CrossRefGoogle Scholar
  6. 6.
    D. Dopp, C. Kruger, H.R. Memarian, Y.-H. Tsay, Angew. Chem. Int. Ed. Engl. 24, 1048–1049 (1985)CrossRefGoogle Scholar
  7. 7.
    K. Mizuno, C. Pac, H. Sakurai, J. Chem. Soc., Chem. Commun. 648–649 (1974)Google Scholar
  8. 8.
    K. Kan, Y. Kai, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn. 52, 1634–1636 (1979)CrossRefGoogle Scholar
  9. 9.
    J. Cornelisse, Chem. Rev. 93, 615–669 (1993)CrossRefGoogle Scholar
  10. 10.
    H. Mukae, H. Maeda, K. Mizuno, Angew. Chem. Int. Ed. Engl. 45, 6558–6560 (2006)CrossRefGoogle Scholar
  11. 11.
    W.C. Agosta, P. Margaretha, Acc. Chem. Res. 29, 179–182 (1996)CrossRefGoogle Scholar
  12. 12.
    K. Nakatani, K. Tanabe, I. Saito, Tetrahedron Lett. 38, 1207–1210 (1997)CrossRefGoogle Scholar
  13. 13.
    Y. Kubo, T. Inoue, H. Sakai, J. Am. Chem. Soc. 114, 7660–7663 (1992)CrossRefGoogle Scholar
  14. 14.
    Y. Kubo, T. Noguchi, T. Inoue, Chem. Lett. 2027–2030 (1992)Google Scholar
  15. 15.
    Y. Kubo, M. Yoshioka, K. Kiuchi, S. Nakajima, I. Inamura, Tetrahedron Lett. 40, 527–530 (1999)CrossRefGoogle Scholar
  16. 16.
    Y. Kubo, K. Kusumoto, S. Nakajima, I. Inamura, Chem. Lett. 113–114 (1999)Google Scholar
  17. 17.
    Y. Kubo, K. Kiuchi, I. Inamura, Bull. Chem. Soc. Jpn. 72, 1101–1108 (1999)CrossRefGoogle Scholar
  18. 18.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision D.02, Gaussian, Inc. Wallingford, CT (2004)Google Scholar
  19. 19.
    P.C. Hariharah, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1973)CrossRefGoogle Scholar
  20. 20.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  21. 21.
    C. Lee, W. Yang, R.G. Paar, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  22. 22.
    D.P. Chong, ed. M.E. Casisa, Recent Advances in Density Functional Methods, Part I, World Scientific Publishing Co. Pte. Inc. Singapore (1995)Google Scholar
  23. 23.
    B.O. Roos, Computational Photochemistry (Elsevier B. V, Amsterdam, 2005)Google Scholar
  24. 24.
    J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96, 135–149 (1992)CrossRefGoogle Scholar
  25. 25.
    M. Karplus, J. Am. Chem. Soc. 85, 2870–2871 (1963)CrossRefGoogle Scholar
  26. 26.
    C. A. Vernon, J. Chem. Soc. 423–428 (1954)Google Scholar
  27. 27.
    H.C. Brown, C.G. Rao, M. Ravindranathan, J. Org. Chem. 43, 4939–4943 (1978)CrossRefGoogle Scholar
  28. 28.
    H. Mayr, W. Foerner, P.v.R. Schleyer, J. Am. Chem. Soc. 101, 6032–6040 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Materials Science, Faculty of Science and EngineeringShimane UniversityMatsueJapan

Personalised recommendations