Research on Chemical Intermediates

, Volume 39, Issue 3, pp 881–894 | Cite as

Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method

  • A. Martínez-de la Cruz
  • U. M. García-Pérez
  • S. Sepúlveda-Guzmán


BiVO4 photocatalyst was synthesized by a polymer-assisted hydrothermal method at different temperatures and reaction times. Sodium carboxymethylcellulose was used in order to assist the formation of BiVO4 oxide. The resulting samples were characterized by X-ray powder diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and adsorption–desorption N2 isotherms (BET). The predominant BiVO4 phase of the system within the 160–200 °C range was the monoclinic crystalline structure, which was obtained in pure form only under certain experimental conditions. Short reaction times promoted the formation of linear arrays of BiVO4 formed by particles with irregular form ranging in size between 100 and 200 nm. The photocatalytic activity of BiVO4 samples was evaluated in the degradation of rhodamine B (rhB) under visible-light irradiation. The samples exhibited a higher activity when they were synthesized at higher temperatures and longer times of hydrothermal reaction. The total organic carbon analysis of a sample irradiated for 100 h revealed that mineralization of rhB by the BiVO4 photocatalyst is feasible.


Oxides Semiconductors Chemical synthesis X-ray-diffraction Surface properties 



We wish to thank to the Universidad Autónoma de Nuevo León (UANL) for its invaluable support through the project PAICYT 2010 and to CONACYT for supports the project 81546.


  1. 1.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Laufs, G. Burgeth, W. Duttlinger, R. Kurtenbach, M. Maban, C. Thomas, P. Wiesen, J. Kleffmann, Atmos. Environ. 44, 2341 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007)CrossRefGoogle Scholar
  4. 4.
    J.W. Tang, Z.G. Zou, J.H. Ye, Chem. Mater. 16, 1644 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Martínez-de la Cruz, D. Sánchez Martínez, E. López Cuéllar, Solid State Sci. 12, 88 (2010)CrossRefGoogle Scholar
  6. 6.
    Z. Zou, J. Ye, K. Sayama, H. Arakawa, Chem. Phys. Lett. 333, 57 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121, 11459 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Martínez-de la Cruza, S. Obregón Alfaro, L.M. Torres-Martínez, I. Juárez Ramírez, J. Ceram. Process. Res. 9, 490 (2008)Google Scholar
  9. 9.
    A. Martínez-de la Cruz, S. Obregón Alfaro, J. Mol. Catal. A 320, 85 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Martínez-de la Cruz, S. Obregón Alfaro, Solid State Sci. 11, 829 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, J. Eur. Ceram. Soc. 28, 2955 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Kudo, K. Ueda, H. Kato, I. Mikami, Catal. Lett. 53, 229 (1998)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, D. Chen, X. Jiao, J. Phys. Chem. B 110, 2668 (2006)CrossRefGoogle Scholar
  14. 14.
    L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, J. Mol. Catal. A 252, 120 (2006)CrossRefGoogle Scholar
  15. 15.
    H. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, Mater. Res. Bull. 44, 700 (2009)CrossRefGoogle Scholar
  16. 16.
    H.M. Zhang, J.B. Liu, H. Wang, W.X. Zhang, H. Yan, J. Nanopart. Res. 10, 767 (2008)CrossRefGoogle Scholar
  17. 17.
    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, J. Hazard. Mater. 173, 194 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Li, B. Yan, J. Alloys Compd. 476, 624 (2009)CrossRefGoogle Scholar
  19. 19.
    W. Yin, W. Wang, M. Shang, L. Zhou, S. Sun, L. Wang, Eur. J. Inorg. Chem. 29–30, 4379 (2009)Google Scholar
  20. 20.
    H. Jiang, M. Nagai, K. Kobayashi, J. Alloys Compd. 479, 821 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Chemosphere 63, 956 (2006)CrossRefGoogle Scholar
  22. 22.
    K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Gotić, S. Musić, M. Ivanda, M. Šoufek, S. Popović, J. Mol. Struct. 744–747, 535 (2005)Google Scholar
  24. 24.
    A. Zhang, J. Zhang, Spectrochim. Acta A 73, 336 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Li, G. Liu, X. Duan, Mater. Chem. Phys. 115, 9 (2009)CrossRefGoogle Scholar
  26. 26.
    T. Yang, D. Xia, G. Chen, Y. Chen, Mater. Chem. Phys. 114, 69 (2009)CrossRefGoogle Scholar
  27. 27.
    F. Dong, Q. Wu, J. Ma, Y. Chen, Phys. Status Solidi A 206, 59 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Sun, W. Wang, L. Zhou, H. Xu, Ind. Eng. Chem. Res. 48, 1735 (2009)CrossRefGoogle Scholar
  29. 29.
    E.G. van der Linden, L.F.B. Malta, M.E. Medeiros, Dyes Pigments 90, 36 (2011)CrossRefGoogle Scholar
  30. 30.
    X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Mater. Chem. Phys. 125, 59 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu, J. Alloys Compd. 496, 287 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Sun, Y. Xie, C. Wu, S. Zhang, S. Jiang, Nano Res. 3, 620 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, Y. Xie, Chem. Asian J. 5, 2515 (2010)CrossRefGoogle Scholar
  34. 34.
    G. Xi, J. Ye, Chem. Commun. 46, 1893 (2010)CrossRefGoogle Scholar
  35. 35.
    Y. Guo, X. Yang, F. Ma, K. Li, L. Xu, X. Yuan, Y. Guo, Appl. Surf. Sci. 256, 2215 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Zhou, K. Vuille, A. Heel, B. Probst, R. Kontic, G.R. Patzke, Appl. Catal. A 375, 140 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M.-H. Whangbo, Catal. Commun. 11, 210–213 (2009)CrossRefGoogle Scholar
  38. 38.
    F. Wang, M. Shao, L. Cheng, J. Hua, X. Wei, Mater. Res. Bull. 44, 1687 (2009)CrossRefGoogle Scholar
  39. 39.
    A. Zhang, J. Zhang, J. Mater. Lett. 63, 1939 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, J. Mol. Catal. A 304, 28 (2009)CrossRefGoogle Scholar
  41. 41.
    T. Yang, D. Xi, J. Cryst. Growth 311, 4505 (2009)CrossRefGoogle Scholar
  42. 42.
    D. Ke, T. Peng, L. Ma, P. Cai, K. Dai, Inorg. Chem. 48, 4685 (2009)CrossRefGoogle Scholar
  43. 43.
    Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. Wang, Chem. Eur. J. 14, 1601 (2008)CrossRefGoogle Scholar
  44. 44.
    Y. Zheng, J. Wu, F. Duan, Y. Xie, Chem. Lett. 36, 520 (2007)CrossRefGoogle Scholar
  45. 45.
    X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Mater. Chem. Phys. 103, 162 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)CrossRefGoogle Scholar
  47. 47.
    J. Liu, H. Wang, S. Wang, H. Yan, Mater. Sci. Eng. B 104, 36 (2003)CrossRefGoogle Scholar
  48. 48.
    U.M. García Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, U. Ortiz Méndez, J. Mol. Catal. A 335, 169 (2011)CrossRefGoogle Scholar
  49. 49.
    A. Martínez-de la Cruz, U.M. García Pérez, Mater. Res. Bull. 45, 135 (2010)CrossRefGoogle Scholar
  50. 50.
    B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004)CrossRefGoogle Scholar
  51. 51.
    J.B. Condon, Surface Area and Porosity Determinations by Physisorption (Elsevier, Amsterdam, 2006). ISBN 0-444-51964-5Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Martínez-de la Cruz
    • 1
  • U. M. García-Pérez
    • 1
  • S. Sepúlveda-Guzmán
    • 1
  1. 1.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo León, Ciudad UniversitariaSan Nicolás de los GarzaMexico

Personalised recommendations