Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 2, pp 693–705 | Cite as

Dynamic hydrothermal synthesis of Al-substituted 11 Å tobermorite from solid waste fly ash residue-extracted Al2O3

  • Feng Luo
  • Cundi Wei
  • Bing Xue
  • Shujuan Wang
  • Yinshan Jiang
Article

Abstract

Fly ash residue (hereafter, FAR) is the by-product of pulverized coal combustion fly ash-extracted Al2O3. It results in a hazardous industrial solid waste if it does not have appropriate treatment and utilization. Al-substituted 11 Å tobermorite is successfully synthesized from FAR/SiO2 mixture by dynamic hydrothermal treatment at 220 °C for 6 h. FAR and its hydrothermal reaction products are studied by chemical analysis, XRD, SEM, FTIR, and BET methods. The XRD results show that dicalcium silicate existing in FAR has been converted into tobermorite after the hydrothermal treatment. The main crystalline phases of product are Al-substituted 11 Å tobermorite and minor calcite. SEM results show that the hydrothermal products of the FAR/SiO2 mixture consist of many tiny needlelike and platy crystals which form micro-porous spherical particles, ranging in size from a few microns to dozens of microns, and have a specific surface area of 49.004 m2/g. The Al-substituted tobermorite-bearing products have a high performance of exclusion of Cr3+ from acidified aqueous media, and the adsorption efficiency of Cr3+ is 98 %. The exclusion reaction proceeds rapidly, reaching equilibria within 1 h. The results show that this product has a potential to be used in industrial processes for adsorption of heavy metal cations from wastewater.

Keywords

Fly ash residue Dynamic hydrothermal synthesis Al-substituted 11 Å tobermorite Adsorption agent 

Notes

Acknowledgments

This work is financially supported by the National Natural Sciences Foundation of China (Grant No. 41072025) and the China Geological Survey (No. 1212011120312).

References

  1. 1.
    A. Yilmaz, N. Degirmenci, Waste Manag. 29, 1541 (2009)CrossRefGoogle Scholar
  2. 2.
    N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Waste Manag. 26, 260 (2006)CrossRefGoogle Scholar
  3. 3.
    X. Huang, D. Jiang, S. Tan, J. Eur. Ceram. Soc. 23, 123 (2003)CrossRefGoogle Scholar
  4. 4.
    J. Kikuma, M. Tsunashima, T. Ishikawa, S. Matsuno, A. Ogawa, K. Matsui, M. Sato, J. Solid State Chem. 184, 2066 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Komarneni, J.S. Komarneni, B. Newalkar, S. Stout, Mater. Res. Bull. 37, 1025 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Youssef, D. Ibrahim, S. Komarneni, K.J.D. Mackenzie, Ceram. Int. 36, 203 (2010)CrossRefGoogle Scholar
  7. 7.
    Z.-L. Wang, Z.-Z. Jing, W. Ke, L. Zhou, J.-M. Yu, Z.-S. Li, E.H. Ishida, Res. Chem. Intermed. 37, 219 (2011)CrossRefGoogle Scholar
  8. 8.
    C.A. Ríos, C.D. Williams, M.A. Fullen, Appl. Clay Sci. 43, 228 (2009)CrossRefGoogle Scholar
  9. 9.
    N.J. Coleman, D.S. Brassington, Mater. Res. Bull. 38, 485 (2003)CrossRefGoogle Scholar
  10. 10.
    N.J. Coleman, Mater. Res. Bull. 40, 2000 (2005)CrossRefGoogle Scholar
  11. 11.
    Z. Jing, F. Jin, N. Yamasaki, E.H. Ishida, Ind. Eng. Chem. Res. 46, 2657 (2007)CrossRefGoogle Scholar
  12. 12.
    C. Shan, Z. Jing, L. Pan, L. Zhou, X. Pan, L. Lu, Res. Chem. Intermed. 37, 551 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Reinik, I. Heinmaa, J.-P. Mikkola, U. Kirso, Fuel 86, 669 (2007)CrossRefGoogle Scholar
  14. 14.
    N.J. Coleman, C.J. Trice, J.W. Nicholson, Int. J. Miner. Process. 93, 73 (2009)CrossRefGoogle Scholar
  15. 15.
    V.J. Inglezakis, H. Grigoropoulou, J. Hazard. Mater. B112, 37 (2004)CrossRefGoogle Scholar
  16. 16.
    D.I. Brandwein, G.T. Brookman, Environ. Prog. 1, 1 (1982)CrossRefGoogle Scholar
  17. 17.
    A. Nakahira, H. Naganuma, T. Kubo, Y. Yamasaki, J. Ceram. Soc. Jpn. 116(3), 500 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Maeda, K. Abe, E.H. Ishida, J. Ceram. Soc. Jpn. 119(5), 375 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Reinika et al., J. Hazard. Mater. 196, 180 (2011)CrossRefGoogle Scholar
  20. 20.
    W. Nocuń-Wczelik, Cem. Concr. Res. 29, 1759 (1999)CrossRefGoogle Scholar
  21. 21.
    P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong, J. Am. Ceram. Soc. 82(3), 742 (1999)CrossRefGoogle Scholar
  22. 22.
    N.Y. Mostafa, A.A. Shaltout, H. Omar, S.A. Abo-El-Enein, J. Alloys Compd. 467, 332 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Komarneni, D.M. Roy, R. Roy, Cem. Concr. Res. 12, 773 (1982)CrossRefGoogle Scholar
  24. 24.
    E.I. Al-Wakeel, S.A. El-Korashy, S.A. El-Hemaly, M.A. Rizk, J. Mater. Res. 36, 2405 (2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Feng Luo
    • 1
  • Cundi Wei
    • 1
  • Bing Xue
    • 1
  • Shujuan Wang
    • 1
  • Yinshan Jiang
    • 1
  1. 1.Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations