Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 2, pp 645–657 | Cite as

Synthesis, structural and photocatalytic studies of Mn-doped CdS nanoparticles

  • Ruby Chauhan
  • Ashavani Kumar
  • Ram Pal Chaudhary
Article

Abstract

Mn-doped CdS nanoparticles (Cd1−x Mn x S; where x = 0.00–0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope (TEM), and UV–Vis spectrometer. The XRD and TEM measurements show that the size of crystallites is in the range of 10–40 nm. Optical measurements indicated a red shift in the absorption band edge upon Mn doping. The direct allowed band gaps of undoped and Mn-doped CdS nanoparticles measured by UV–Vis spectrometer were 2.3 and 2.4 eV at 400 °C, respectively. Photocatalytic activities of CdS and Mn-doped CdS were evaluated by irradiating the solution to ultraviolet light and taking methyl orange (MO) as organic dye. It was found that 5 mol% Mn-doped CdS bleaches MO much faster than undoped CdS upon its exposure to the ultraviolet light. The experiment demonstrated that the photo-degradation efficiency of 5 mol% Mn-doped CdS was significantly higher than that of undoped CdS.

Keywords

Nanoparticles X-ray diffraction UV–Vis spectrometer Scanning electron microscope Transmission electron microscope Photocatalysis 

Notes

Acknowledgements

TGhe authors are grateful to Dr. Sanjeev Aggrawal and Nidhi Sekhawat, Kurukshetra University, Kurukshetra, for technical support in obtaining UV–Vis spectra. The authors are also grateful to the Director, NIT, Kurukshetra, for XRD facilities in the physics department.

References

  1. 1.
    W.A. Zeltner, M.A.Anderson, in Fine Particles Science and Technology, vol. 643, ed. by E. Pelizzetti (Kluwer, Dordrecht, 1996)Google Scholar
  2. 2.
    S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581 (2007)CrossRefGoogle Scholar
  3. 3.
    T.F. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresource Technol. 77, 247 (2001)CrossRefGoogle Scholar
  4. 4.
    P.P. Zamora, A. Kunz, S.G. Moraes, R. Pelegrini, P.C. Moleiro, J. Reyes, N. Duran, Chemosphere 38, 835 (1999)CrossRefGoogle Scholar
  5. 5.
    L. Ladakowicz, M. Solecka, R. Zylla, J. Biotechnol. 89, 175 (2001)CrossRefGoogle Scholar
  6. 6.
    D. Georgiou, P. Melidis, A. Aivasidis, K. Gimouhopoulos, Dyes Pigment. 52, 69 (2002)CrossRefGoogle Scholar
  7. 7.
    Z. Zainal, C.Y. Lee, M.Z. Hussein, A. Kassim, N.Y. Yusof, J. Hazard. Mater. 118, 197 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Hoffman, S. Martin, W. Choi, D. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  9. 9.
    D. Beydoun, R. Amal, G. Low, S. McEvoy, J. Nanopart. Res. 1, 439 (1999)CrossRefGoogle Scholar
  10. 10.
    N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. 157, 111 (2003)CrossRefGoogle Scholar
  11. 11.
    C. Wang, Z. Zhang, J. Ying, Nanostruct. Mater. 9, 583 (1997)CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, C. Wang, R. Zakaria, J. Ying, J. Phys. Chem. B 102, 10871 (1998)CrossRefGoogle Scholar
  13. 13.
    A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 8, 43 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Yang, C. Huang, X. Li, R. Shi, K. Zhang, Mater. Chem. Phys. 90, 155 (2005)CrossRefGoogle Scholar
  15. 15.
    W.Z. Tang, C.P. Huang, Chemosphere 30, 1385 (1995)CrossRefGoogle Scholar
  16. 16.
    Arturo. Morales-Acevedo, Sol. Energy Mater. Sol. Cells 90, 2213 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Murai, T. Abe, J. Matsuda, H. Sato, S. Chiba, Y. Kashiwaba, Appl. Surf. Sci. 244, 351 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, S. Ramanathan, Q. Fan, F. Yun, H. Morkoe, S. Bandyopadhyay, J. Nansci. Nanotechnol. 6(7), 2077 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Ponzoni, E. Comini, G. Sbervcglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, Z.L. Wang, Appl. Phys. Lett. 88, 203101 (2006)CrossRefGoogle Scholar
  20. 20.
    X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)CrossRefGoogle Scholar
  21. 21.
    R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, J. Chem. Phys. 82, 552 (1995)CrossRefGoogle Scholar
  22. 22.
    R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, J. Chem. Phys. 80, 4464 (1984)CrossRefGoogle Scholar
  23. 23.
    J.J. Ramsden, S.E. Wedder, M. Gratzel, J. Phys. Chem. 89, 2740 (1985)CrossRefGoogle Scholar
  24. 24.
    C. Petit, M.P. Pileni, J. Phys. Chem. 92, 2282 (1988)CrossRefGoogle Scholar
  25. 25.
    P. Lianos, J.K. Thomas, Chem. Phys. Lett. 125, 299 (1987)CrossRefGoogle Scholar
  26. 26.
    H.J. Watzke, J.H. Fendler, J. Phys. Chem. 91, 854 (1987)CrossRefGoogle Scholar
  27. 27.
    R.D. Stramel, T. Nakamura, J.K. Thomas, J. Chem. Soc. Faraday Trans. 84, 1287 (1988)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, N. Herron, J. Phys. Chem. 91, 257 (1987)CrossRefGoogle Scholar
  29. 29.
    M. Ohtaki, K. Oda, K. Eguchi, H. Arai, J. Chem. Soc. Chem. Commun. 41, 1209 (1996)Google Scholar
  30. 30.
    C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)CrossRefGoogle Scholar
  31. 31.
    J.C. Manifacier, M. De Murcia, J.P. Fillard, E. Vicario, Thin Solid Films 41, 127 (1997)CrossRefGoogle Scholar
  32. 32.
    J.I. Pankove, Optical process in semiconductors (Prentice-Hall, New Jersey, 1971)Google Scholar
  33. 33.
    G. Shao, J. Phys. Chem. C 112, 18677 (2008)Google Scholar
  34. 34.
    G. Shao, J. Phys. Chem. C 113, 6800 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ruby Chauhan
    • 1
    • 2
  • Ashavani Kumar
    • 3
  • Ram Pal Chaudhary
    • 1
  1. 1.Department of ChemistrySant Longowal Institute of Engineering & TechnologyLongowalIndia
  2. 2.Technology Education and Research Integrated InstitutionsKurukshetraIndia
  3. 3.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations