Research on Chemical Intermediates

, Volume 38, Issue 6, pp 1225–1236 | Cite as

Ru/Ni/MgAl2O4 catalysts for steam reforming of methane: effects of Ru content on self-activation property

  • Seung-Chan Baek
  • Ki-Won Jun
  • Yun-Jo Lee
  • Jae Dong Kim
  • Dal Young Park
  • Kwan-Young Lee


The effects of Ru on the self-reducibility of Ru-doped Ni/MgAl2O4 catalysts, which do not need pre-reduction treatment with H2, were investigated in the steam reforming of methane (SRM). The Ru-promoted Ni/MgAl2O4 catalysts with various amounts of Ru (0–0.5 wt%) were prepared by stepwise impregnation and co-impregnation methods using hydrotalcite-like MgAl2O4 support. For comparison, Ru/MgAl2O4 catalysts with the same amount of Ru were also prepared by the impregnation method. The catalysts were characterized by the N2-sorption, XRD, H2-TPR, H2-chemisorption, and XPS methods. Ni/MgAl2O4 catalyst in the presence of even the trace amount of Ru (Ru content ≥0.05 wt%) showed higher conversion without pre-reduction as compared to Ru/MgAl2O4 catalysts in SRM under the same conditions. The self-activation of Ru–Ni/MgAl2O4 catalysts is mainly attributed to the spillover of hydrogen, which is produced on Ru at first and then reduces NiO species under reaction conditions. Besides, Ru doping makes the reduction of NiO easier. The stepwise impregnated Ru/Ni/MgAl2O4 catalyst produced superior performance as compared to co-impregnated Ru–Ni/MgAl2O4 catalyst for SRM.


Steam reforming of methane H2 production Ru/Ni/MgAl2O4 Ru/MgAl2O4 Self-activation 


  1. 1.
    M.A. Pena, J.P. Gomez, J.L.G. Fierro, Appl. Catal. A 144, 7 (1997)Google Scholar
  2. 2.
    J.N. Amor, Appl. Catal. A 176, 159 (1999)CrossRefGoogle Scholar
  3. 3.
    J.R. Rostrup-Nielsen, Catal. Today 71, 243 (2002)CrossRefGoogle Scholar
  4. 4.
    C. Song, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46(1), 8 (2001)Google Scholar
  5. 5.
    D. Li, I. Atake, T. Shishido, Y. Oumi, T. Sano, K. Takehira, J. Catal. 250, 299 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Miyata, D. Li, M. Shiraga, T. Shishido, Y. Oumin, T. Sano, K. Takehira, Appl. Catal. A 310, 97 (2006)CrossRefGoogle Scholar
  7. 7.
    J.A.C. Dias, J.M. Assaf, J. Pow. Sour. 130, 106 (2004)CrossRefGoogle Scholar
  8. 8.
    J.A.C. Dias, J.M. Assaf, J. Pow. Sour. 139, 176 (2005)CrossRefGoogle Scholar
  9. 9.
    J.H. Jeong, J.W. Lee, D.J. Seo, Y. Seo, W.L. Yoon, D.K. Lee, D.H. Kim, Appl. Catal. A 302, 151 (2006)CrossRefGoogle Scholar
  10. 10.
    K. Tomishige, S. Kanazawa, M. Sato, K. Ikushima, K. Kunimori, Catal. Lett. 84, 69 (2002)CrossRefGoogle Scholar
  11. 11.
    K. Takehira, J. Nat. Gas Chem. 18, 237 (2009)CrossRefGoogle Scholar
  12. 12.
    L.P.R. Profeti, J.A.C. Dias, J.M. Assaf, E.M. Assaf, J. Pow. Sour. 190, 525 (2009)CrossRefGoogle Scholar
  13. 13.
    M.C. Sanchez-Sanchez, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 32, 1462 (2007)CrossRefGoogle Scholar
  14. 14.
    L.S. Carvalho, A.R. Martins, P. Reyes, M. Oportus, A. Albonoz, V. Vicentini, M. Rangel, Catal. Today 142, 52 (2009)CrossRefGoogle Scholar
  15. 15.
    J.M. Rynkowski, T. Paryjczak, M. Lenik, Appl. Catal. A 126, 257 (1995)CrossRefGoogle Scholar
  16. 16.
    M. Shiraga, D. Li, I. Atake, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Appl. Catal. A 318, 143 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Zhan, D. Li, K. Nishida, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Appl. Catal. A 356, 231 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Li, M. Shiraga, I. Atake, T. Shihido, Y. Oumi, T. Sano, K. Takehira, Appl. Catal. A 321, 155 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Crisafulli, S. Scire, R. Mggiore, S. Minico, S. Galvagno, Catal. Lett. 59, 21 (1999)CrossRefGoogle Scholar
  20. 20.
    C. Crisafulli, S. Scire, S. Minico, L. Solarino, Appl. Catal. A 225, 1 (2002)CrossRefGoogle Scholar
  21. 21.
    A.F. Lucrédio, J.M. Assaf, E.M. Assaf, Appl. Catal. A 400, 156 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Petroleum Displacement Technology Research CenterKorea Research Institute of Chemical Technology (KRICT)Yuseong, DaejeonRepublic of Korea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.New Energy and Environment TeamKorea Gas CorporationAnsanRepublic of Korea

Personalised recommendations