Advertisement

Research on Chemical Intermediates

, Volume 38, Issue 2, pp 523–536 | Cite as

Synthesis of Er3+:Y3Al5O12 and its effects on the solar light photocatalytic activity of TiO2–ZrO2 composite

  • Linuan Yin
  • Jingqun Gao
  • Jun Wang
  • Xiaoyu Luan
  • Pingli Kang
  • Ying Li
  • Kai Li
  • Xiangdong Zhang
Article

Abstract

The Er3+:Y3Al5O12 as an upconversion luminescence agent, which can transform visible light into ultraviolet light, was synthesized by nitrate–citrate acid and calcined method. Then, a novel photocatalyst, Er3+:Y3Al5O12/TiO2–ZrO2, was prepared using ultrasonic dispersion and liquid boiling method. The samples were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). In succession, the degradation process of organic dye was monitored by UV–Vis spectrum and ion chromatography for verifying the photocatalytic activity of Er3+:Y3Al5O12/TiO2–ZrO2. The influences on its photocatalytic activity such as Ti/Zr molar ratio, heat-treated temperature, and time were studied. In addition, the influences of initial concentration, Er3+:Y3Al5O12/TiO2–ZrO2 amount, solar light irradiation time, and organic dye category on the photocatalytic degradation efficiency were also investigated. It was found the photocatalytic activity of Er3+:Y3Al5O12/TiO2–ZrO2 was superior to Er3+:Y3Al5O12/TiO2 and Er3+:Y3Al5O12/ZrO2. Therefore, the Er3+:Y3Al5O12/TiO2–ZrO2 is a useful photocatalytic material for the wastewater treatment duo to efficient utilization of solar light.

Keywords

Upconversion luminescence Er3+:Y3Al5O12 TiO2–ZrO2 composites Solar light Photocatalytic activity 

Notes

Acknowledgments

The authors greatly acknowledge the National Natural Science Foundation of China, Liaoning Province Natural Science Foundation of Education Department, Liaoning Province Natural Science Foundation of Science and Technology Department and Liaoning University “211” Engineering Construction Foundation for financial support. The authors also thank our colleagues and other students for their participating in this work.

References

  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  2. 2.
    J.W. Michael, T.C. Adrienne, Sol. Energy 82, 206–211 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, A. Agostiano, Appl. Catal. B Environ. 60, 1–11 (2005)CrossRefGoogle Scholar
  4. 4.
    M.J. Height, S.E. Pratsinis, Appl. Catal. B Environ. 63, 305–312 (2006)CrossRefGoogle Scholar
  5. 5.
    M. Mrowetz, E. Selli, J. Photochem. Photobiol. A Chem. 180, 15–22 (2006)CrossRefGoogle Scholar
  6. 6.
    Q. Xiao, J. Zhang, C. Xiao, Z.C. Si, X.K. Tan, Sol. Energy 82, 706–731 (2008)CrossRefGoogle Scholar
  7. 7.
    A.A. Ismail, Appl. Catal. B Environ. 85, 33–39 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Muhammad, A.R. Iftikhar, P. Arshad, Sol. Energy 83, 1527–1533 (2009)CrossRefGoogle Scholar
  9. 9.
    L.Q. Jing, Y.C. Qun, B.Q. Wang, S.D. Li, B.J. Jiang, L.B. Yang, W. Fu, H.G. Fu, J.Z. Sun, Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Wang, T. Ma, G. Zhang, Z.H. Zhang, X.D. Zhang, Y.F. Jiang, G. Zhao, P. Zhang, Catal. Commun. 8, 607–611 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Wang, Y.P. Xie, Z.H. Zhang, J. Li, X. Chen, L.Q. Zhang, R. Xu, X.D. Zhang, Sol. Energy Mater. Sol. Cells 93, 355–361 (2009)CrossRefGoogle Scholar
  12. 12.
    J.H. Yan, L. Zhang, H.H. Yang, Y.G. Tang, Z.G. Lu, S.L. Guo, Y.L. Dai, Y. Han, M.H. Yao, Sol. Energy 83, 1534–1539 (2009)CrossRefGoogle Scholar
  13. 13.
    M.C. Neves, J.M. Nogueira, T. Trindade, M.H. Mendonça, M.I. Pereira, O.C. Monteiro, J. Photochem. Photobiol. A Chem. 204, 168–173 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.D. Liu, F. Xin, F.M. Wang, S.X. Luo, X.H. Yin, J. Alloy Compd. 498, 179–184 (2010)CrossRefGoogle Scholar
  15. 15.
    J.A. Rengifo-Herrera, C. Pulgarin, Sol. Energy 84, 37–43 (2010)CrossRefGoogle Scholar
  16. 16.
    P. Guo, X.S. Wang, H.C. Guo, Appl. Catal. B Environ. 90, 677–687 (2009)CrossRefGoogle Scholar
  17. 17.
    S.S. Kim, J.H. Yum, Y.E. Sung, J. Photochem. Photobiol. A Chem. 171, 269–273 (2005)CrossRefGoogle Scholar
  18. 18.
    S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 153, 412–417 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Chareonlimkun, V. Champreda, A. Shotipruk, N. Laosiripojana, Bioresour. Technol. 101, 4179–4186 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A Gen. 333, 264–271 (2007)CrossRefGoogle Scholar
  21. 21.
    Y.H. Jiang, Y.M. Sun, H. Liu, F.H. Zhu, H.B. Yin, Dyes Pigments 78, 77–83 (2008)CrossRefGoogle Scholar
  22. 22.
    B.C. Wu, R.S. Yuan, X.Z. Fu, J. Solid State Chem. 128, 560–565 (2009)CrossRefGoogle Scholar
  23. 23.
    J.Y. Kim, C.S. Kim, H.K. Chang, T.O. Kim, Adv. Powder Technol. 21, 141–144 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Wang, F.Y. Wen, Z.H. Zhang, X.D. Zhang, Z.J. Pan, P. Zhang, P.L. Kang, J. Tong, L. Wang, L. Xu, J. Photochem. Photobiol. A Chem. 180, 189–195 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Wang, R.H. Li, Z.H. Zhang, W. Sun, R. Xu, Y.P. Xie, Z.Q. Xing, X.D. Zhang, Appl. Catal. A Gen. 334, 227–233 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Wang, Y.P. Xie, Z.H. Zhang, J. Li, C.W. Li, L.Q. Zhang, Z.Q. Xing, R. Xu, X.D. Zhang, Environ. Chem. Lett. 8, 87–93 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Wang, Y.P. Xie, Z.H. Zhang, J. Li, Z. Jiang, Z.Q. Xing, R. Xu, X.D. Zhang, Russ. J. Phys. Chem. 83, 2350–2356 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Stanoi, A. Popescu, C. Ghica, G. Socol, E. Axente, C. Ristoscu, I.N. Mihailescu, A. Stefan, S. Georgescu, Appl. Surf. Sci. 253, 8268–8272 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Chakrabarti, B.K. Dutta, J. Hazard. Mater. 112, 269–278 (2004)CrossRefGoogle Scholar
  30. 30.
    M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. 133, 226–232 (2006)CrossRefGoogle Scholar
  31. 31.
    N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A Chem. 162, 317–322 (2004)CrossRefGoogle Scholar
  32. 32.
    C. Wang, J. Li, G. Mele, G.M. Yang, F.X. Zhang, L. Palmisano, G. Vasapollo, Appl. Catal. B Environ. 76, 218–226 (2007)CrossRefGoogle Scholar
  33. 33.
    H.L. Xu, Z.K. Jiang, Chem. Phys. 287, 155–159 (2003)CrossRefGoogle Scholar
  34. 34.
    H.G. Yang, Z.W. Dai, Z.W. Sun, J. Lumin. 124, 207–212 (2007)CrossRefGoogle Scholar
  35. 35.
    N.N. Zu, H.G. Yang, Z.W. Dai, Phys. B 403, 174–177 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Linuan Yin
    • 1
  • Jingqun Gao
    • 1
  • Jun Wang
    • 1
  • Xiaoyu Luan
    • 1
  • Pingli Kang
    • 1
  • Ying Li
    • 1
  • Kai Li
    • 1
  • Xiangdong Zhang
    • 1
  1. 1.College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations