Research on Chemical Intermediates

, Volume 38, Issue 1, pp 67–75 | Cite as

Photocatalytic reaction and degradation of methylene blue on TiO2 films in vacuum: an X-ray photoelectron spectroscopy study

  • XiKun Yang
  • Liang Xiong
  • XuanZhi Hu
  • Bin He
  • GuoDong Chu


Photocatalytic reaction and degradation of methylene blue on TiO2 films illuminated by ultraviolet light in air and in vacuum were studied by X-ray photoelectron spectroscopy (XPS). The results show that TiO2 film has photocatalytic activity in high vacuum, while the oxygen-containing groups on TiO2 film play a very important role in maintaining photocatalytic reaction, a certain nitrogenous group has been removed from the methylene blue molecule to make the atomic ratio of its N and S decrease from 2.83 to 2.09, and form the intermediate reaction products containing benzene ring and N, S heterocycle, which can be degraded incompletely.


Photocatalysis TiO2 film Vacuum Methylene blue XPS 



The authors thank the National Natural Science Foundation of China (Projects 20863003) and Yunnan Province (Projects 2007PY01-9) for financial support.


  1. 1.
    M.R. Hoffmann, S.T. Martin, W. Choi, Chem. Rev. 95(1), 69–96 (1995)CrossRefGoogle Scholar
  2. 2.
    J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, C. Li, Angew. Chem. Int. Ed. 47, 1766–1769 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Orendorz, C. Ziegler, H. Gnaser, Appl. Surf. Sci. 255(4), 1011–1014 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Gnaser, M.R. Savinab, W.F. Calawayb, C.E. Tripa, I.V. Veryovkin, M.J. Pellin, Int. J. Mass Spectrom. 245(3), 61–67 (2005)CrossRefGoogle Scholar
  5. 5.
    A. Mills, S. Morris, R. Davies, J. Photochem. Photobiol. A 70(2), 183–187 (1993)CrossRefGoogle Scholar
  6. 6.
    T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto, T. Majima, J. Phys. Chem. B 108(50), 19299–19306 (2004)CrossRefGoogle Scholar
  7. 7.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–738 (1995)CrossRefGoogle Scholar
  8. 8.
    Q.J. Liu, X.K. Yang, Q. Liu, B.L. Wang, X.H. Wu, J. Inorg. Mater. (China) 18(6), 1331–1336 (2003)Google Scholar
  9. 9.
    X.K. Yang, Q.J. Liu, Z.Q. Zhu, Y. Li, J. Zhang, S.H. Wang, J. Funct. Mater. (China) 38(1), 101–104 (2007)Google Scholar
  10. 10.
    X.L. Cui, S.T. Wo, D.S. Ren, J. Shen, X.L. Yang, Z.J. Zhang, Acta Chim. Sin. (China) 61(11), 1872–1876 (2003)Google Scholar
  11. 11.
    R. Asahi, T. Morikawa, T. Ohwaki, Science 293(5528), 269–275 (2001)CrossRefGoogle Scholar
  12. 12.
    P. Zeman, S. Takabayashi, Surf Coat Technol 153(1), 93–98 (2002)CrossRefGoogle Scholar
  13. 13.
    J.C. Yu, J. Yu, W. Ho, J. Zhao, J. Photochem. Photobiol. A Chem. 148, 331–339 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Sterrer, O. Diwald, E. Knözinger, J. Phys. Chem. B 104, 3601 (2000)CrossRefGoogle Scholar
  15. 15.
    D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Chem Ind Press, Bejing, 2001), pp. 35–50Google Scholar
  16. 16.
    F.M. John, F.S. William, E.S. Peter, D.B. Kenneth, (Perkin-Elmer Corporation Physical Electronics Division, 1992), pp. 227–236Google Scholar
  17. 17.
    T.Y. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J.C. Zhao, N. Serpone, Sol. Energy Mater. Sol. Cells 73(3), 287 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • XiKun Yang
    • 1
  • Liang Xiong
    • 1
  • XuanZhi Hu
    • 1
  • Bin He
    • 1
  • GuoDong Chu
    • 1
  1. 1.Research Center for Analysis and MeasurementKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations