Research on Chemical Intermediates

, Volume 37, Issue 2–5, pp 259–266 | Cite as

Fe/Sr ratio and calcination temperature effects on processing of nanostructured strontium hexaferrite thin films by a sol–gel method

  • S. M. Masoudpanah
  • S. A. Seyyed Ebrahimi


Nanostructured single-phase strontium hexaferrite, SrFe12O19 (SrM), thin films have been synthesized successfully for the first time on silicon substrates using a spin-coating sol–gel process. The precursor solution was prepared from metal nitrates, citric acid, and ethylene glycol. The thin films with various Fe/Sr molar ratios of 8–12 were heat treated at different temperatures from 700 to 900 °C. The composition, microstructure, and magnetic properties of the SrM thin films were also characterized. The results showed that the optimum molar ratio for Fe/Sr was 10, at which the lowest calcination temperature for obtaining the single-phase strontium hexaferrite thin films was 800 °C. The crystallite size of the resultant thin films was below 50 nm.


Thin film Sol–gel Hexaferrite Nanostructure 


  1. 1.
    M. Matsumoto, A. Morisako, S. Takei, J. Alloys Compd. 326, 215 (2001)CrossRefGoogle Scholar
  2. 2.
    M.E. Koleva, S. Zotova, P.A. Atanasov, R.I. Tomov, C. Ristoscu, V. Nelea, C. Chiritescu, E. Gyorgy, C. Ghica, I.N. Mihailescu, Appl. Surf. Sci. 168, 108 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Ghasemi, A. Morisako, X. Liu, J. Magn. Magn. Mater. 320, 2300 (2008)CrossRefGoogle Scholar
  4. 4.
    M.P. Pechini, U.S. Patent 3,330,697, 1967Google Scholar
  5. 5.
    G.M. Suarez, M.C.C. Morales, M.M.C. Guerrero, K.K. Johal, H.M. Molinar, O.E.A. Valenzuela, J.I.E. Garcia, Mater. Chem. Phys. 77, 796 (2002)CrossRefGoogle Scholar
  6. 6.
    S. Salemizadeh, S.A. Seyyed Ebrahimi, IEEE Trans. Magn. 45, 2538 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Salemizadeh, S.A. Seyyed Ebrahimi, J. Non-Cryst. Solids 355, 982 (2009)CrossRefGoogle Scholar
  8. 8.
    G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue, Z. He, J. Magn. Magn. Mater. 301, 383 (2006)CrossRefGoogle Scholar
  9. 9.
    E. Bacaksiz, M. Parlak, M. Tomakin, M. Karakız, M. Altunbas, J. Alloys Compd. 466, 447 (2008)CrossRefGoogle Scholar
  10. 10.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978), p. 284Google Scholar
  11. 11.
    L. Lutterotti, S. Gialanella, Acta Mater. 46, 101 (1998)CrossRefGoogle Scholar
  12. 12.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies (Wiley, New York, 2001)Google Scholar
  13. 13.
    C. Djordjevic, M. Lee, E. Sinn, Inorg. Chem. 28, 719 (1989)CrossRefGoogle Scholar
  14. 14.
    W. Yongfei, L. Qiaoling, Z. Cunrui, J. Hongxia, J. Alloys Compd. 321, 3368 (2009)Google Scholar
  15. 15.
    T.S. Cho, S.J. Doh, J.H. Je, D.Y. Noh, J. Appl. Phys. 86, 1958 (1999)CrossRefGoogle Scholar
  16. 16.
    N.C. Parmanik, T. Fujii, M. Nakanishi, J. Takada, Mater. Lett. 59, 468 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Center of Excellence for Magnetic Materials, School of Metallurgy and MaterialsUniversity of TehranTehranIran

Personalised recommendations