Advertisement

Research on Chemical Intermediates

, Volume 37, Issue 2–5, pp 467–477 | Cite as

Modeling of ammonothermal growth processes of GaN crystal in large-size pressure systems

  • Qi-Sheng Chen
  • Yan-Ni Jiang
  • Jun-Yi Yan
  • Wei Li
  • V. Prasad
Article

Abstract

Gallium nitride (GaN) is a wide-bandgap semiconductor material with a wide array of applications in optoelectronics and electronics. Modeling of the fluid flow and thermal fields is discussed, and simulations of velocity and volumetric-flow-rate profiles in different pressure systems are shown. The nutrient is considered as a porous media bed, and the flow is simulated using the Darcy–Brinkman–Forchheimer model. The resulting governing equations are solved using the finite-volume method. We analyzed the heat and mass transfer behaviors in autoclaves with diameters of 2.22, 4.44, and 10 cm. The effects of baffle design on flow pattern, and heat and mass transfer in different autoclaves are analyzed. For the research-grade autoclave with diameter of 2.22 cm, the constraint for the GaN growth is found to be the growth kinetics and the total area of seed surfaces in the case of baffle opening of 10%. For large-size pressure systems, the concentration profiles change dramatically due to stronger convection at higher Grashof numbers. The volumetric flow rates of the solvent across the baffles are calculated. Since ammonothermal growth experiments are expensive and time consuming, modeling becomes an effective tool for research and optimization of ammonothermal growth processes.

Keywords

GaN Ammonothermal growth Baffle opening Fluid flow Thermal fields 

Notes

Acknowledgments

This project is supported by the National Natural Science Foundation of China (50776098, 10972226).

References

  1. 1.
    T. Hashimoto, K. Fujito, M. Saito, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 44, 1570 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Hashimoto, K. Fujito, B.A. Haskell, P.T. Fini, J.S. Speck, S. Nakamura, J. Cryst. Growth 275, 525 (2005)CrossRefGoogle Scholar
  3. 3.
    T. Hashimoto, M. Saito, K. Fujito, F. Wu, J.S. Speck, S. Nakamura, J. Cryst. Growth 305, 311 (2007)CrossRefGoogle Scholar
  4. 4.
    M.P. D’Evelyn, H.C. Hong, D.-S. Park, H. Lu, E. Kaminsky, R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, R.J. Molnar, J. Cryst. Growth 300, 11 (2007)CrossRefGoogle Scholar
  5. 5.
    R. Dwilinki, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, H. Hayashi, J. Cryst. Growth 310, 3911 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, H. Hayashi, J. Cryst. Growth 311, 3015 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Fukuda, D. Ehrentraut, J. Cryst. Growth 305, 304 (2007)CrossRefGoogle Scholar
  8. 8.
    D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, J. Cryst. Growth 310, 891 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Fujii, G. Fujimoto, T. Goto, T. Yao, Y. Kagamitani, N. Hoshino, D. Ehrentraut, T. Fukuda, J. Cryst. Growth 310, 896 (2008)CrossRefGoogle Scholar
  10. 10.
    D. Ehrentraut, Y. Kagamitani, T. Fukuda, F. Orito, S. Kawabata, K. Katano, S. Terada, J. Cryst. Growth 310, 3902 (2008)CrossRefGoogle Scholar
  11. 11.
    Q.S. Chen, V. Prasad, W.R. Hu, J. Cryst. Growth 258, 181 (2003)CrossRefGoogle Scholar
  12. 12.
    Q.S. Chen, S. Pendurti, V. Prasad, J. Cryst. Growth 266, 271 (2004)CrossRefGoogle Scholar
  13. 13.
    Q.S. Chen, S. Pendurti, V. Prasad, J. Mater. Sci. 41, 1409 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Carr, J. Fluid Mech. 509, 305 (2004)CrossRefGoogle Scholar
  15. 15.
    V. Prasad, in Convective Heat and Mass Transfer in Porous Media, eds. by S. Kakaç et al. Convective Flow Interaction and Heat Transfer Between Fluid and Porous Layers. (Kluwer, Netherlands, 1991), p. 563Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Qi-Sheng Chen
    • 1
  • Yan-Ni Jiang
    • 1
  • Jun-Yi Yan
    • 1
  • Wei Li
    • 1
  • V. Prasad
    • 2
  1. 1.Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.University of North TexasDentonUSA

Personalised recommendations