Research on Chemical Intermediates

, Volume 37, Issue 2–5, pp 421–428 | Cite as

Surfactant-free wet chemical synthesis of Co(OH)2 nanodisks and nanorings



In this paper, a facile, one-step hydrothermal method for synthesis of Co(OH)2 nanodisks and nanorings without using any surfactants is reported. As-prepared samples were thoroughly characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. The results showed that the size of as-prepared Co(OH)2 nanodisks could be determined by controlling the concentration of NaOH (8–16 mM) while maintaining other reaction conditions (such as temperature, reaction time, and solution compositions) unchanged. Furthermore, hexagonal nanorings could be obtained by changing the molar ratio between Ni and Co precursors.


Co(OH)2 Nanoring Nanodisk Hydrothermal Surfactant free 



This project was financially supported by the National Natural Science Foundation of China (50902007 and 20973019), the 973 Program (010CB934701), as well as by the Specialized Research Fund for the Doctoral Program of Higher Education (20091102110035). Supports by the Fundamental Research Funds for the Central Universities are also acknowledged (No. YMF1002016).


  1. 1.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295(5564), 2425 (2002)CrossRefGoogle Scholar
  2. 2.
    T.S. Ahmadi, Z.L. Wang, T.C. Green et al., Science 272(5270), 1924 (1996)CrossRefGoogle Scholar
  3. 3.
    H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi et al., J. Appl. Phys. 83, 12–7965 (1998)CrossRefGoogle Scholar
  4. 4.
    D.S. Xue, Y.L. Huang, Y. Ma et al., J. Mater. Sci. Lett. 22, 24–1817 (2003)CrossRefGoogle Scholar
  5. 5.
    K. Okada, A. Tanaka, S. Hayashi, J. Mater. Res. 9(7), 1709 (1994)CrossRefGoogle Scholar
  6. 6.
    C. Nedez, J.-P. Boitiaux, C.J. Cameron, Langmuir 12, 16–3927 (1996)Google Scholar
  7. 7.
    Y. Chen, L. Jin, Y. Xie, J. Sol–Gel. Sci. Technol. 13, 735 (1998)CrossRefGoogle Scholar
  8. 8.
    A.P. Philipse, Langmuir. 10, 12–4451 (1994)Google Scholar
  9. 9.
    S. Anantha kumar, Mater. Lett. 43, 174 (2000)CrossRefGoogle Scholar
  10. 10.
    Y. He, R.H. Li, X.K. Ding et al., J. Alloys Compd. 492(1–2), 601 (2010)CrossRefGoogle Scholar
  11. 11.
    P. Elumalai, H.N. Vasan, N. Munichandraiah, J. Power Sources 93(1–2), 201 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Dinamani, P.V. Kamath, J. Appl. Electrochem. 25, 219 (1995)Google Scholar
  13. 13.
    N. Jozer, D.G. Chen, T. Buyuklimanli, Sol. Energy Mater. Sol. Cells 52(3–4), 223 (1998)Google Scholar
  14. 14.
    M. Kurmoo, Chem. Mater. 11, 11–3370 (1999)CrossRefGoogle Scholar
  15. 15.
    Y. Zhu, H. Li, Y. Kottypin, A. Gedanken, J. Mater. Chem. 12, 729 (2002)CrossRefGoogle Scholar
  16. 16.
    Q. Xie, Y. Qian, S. Zhang, Eur. J. Inorg. Chemi. 12, 2454 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Ye, Mater. Lett. 60(25–26), 3175 (2006)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Y. Liu, S. Fu, Mater. Chem. Phys. 104(1), 1661 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Yang, H.W. Liu, W.N. Martens, J. Phys. Chem. C 114(1), 111 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Geng, F. Zhan, H. Jiang, Cryst. Growth Des. 8(10), 3497 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Chemistry and EnvironmentBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations