Research on Chemical Intermediates

, Volume 37, Issue 2–5, pp 389–395 | Cite as

Preparation of nanoparticles and hollow spheres of α-Fe2O3 and their properties



Uniform nanoparticles and hollow microspheres of hematite (α-Fe2O3) were obtained via a hydrothermal method by using iron (III) chloride as a precursor. The effects of reactant concentration, reaction time and temperature on the morphology of the samples were studied. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and superconducting quantum interference device magnetometer (SQUID) measurement. α-Fe2O3 nanoparticles show a superparamagnetic behavior and the average size of the spherical particles was around 60 nm. However, hollow microspheres show a normal ferromagnetic behavior at room temperature with remanent magnetization and coercivity of 0.2482 emu/g and 2,516 Oe, respectively, and their average diameter was around 2 μm. The effects of reactant concentration and reaction temperature on the formation of the products were investigated. The experimental results reveal that the magnetic properties of hematite can be tuned by controlling the morphology.


Iron oxide Hydrothermal method Magnetic properties 



This work is supported by Applied Basic Research Projects of Sichuan Province Education Commission (09ZA175) and Research Foundation of Sichuan University of Science & Engineering (2009ZR6).


  1. 1.
    C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)CrossRefGoogle Scholar
  2. 2.
    X. Wen, S. Wang, Y. Ding, Z.L. Wang, S. Yang, J. Phys. Chem. B 109, 215 (2005)CrossRefGoogle Scholar
  3. 3.
    K. Hayashi, K. Iwasaki, H. Morii, B. Xia, K. Okuyama, J. Nanopart. Res. 3, 149 (2001)CrossRefGoogle Scholar
  4. 4.
    G. Jain, M. Balasubramanian, J.-J. Xu, Chem. Mater. 18, 423 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Neri, A. Bonavita, S. Galvagno et al., Sens. Actuators B 80, 222 (2001)CrossRefGoogle Scholar
  6. 6.
    I. Cesar, A. Kay, J.-G. Martinez, M. Gra¨ tzel, J. Am. Chem. Soc. 128, 4582 (2006)CrossRefGoogle Scholar
  7. 7.
    K. Woo, H.-J. Lee, J.-P. Ahn, Y.-S. Park, Adv. Mater. 15, 1761 (2003)CrossRefGoogle Scholar
  8. 8.
    S.-B. Wang, Y.-L. Min, S.-H. Yu, J. Phys. Chem. C 111, 3551 (2007)CrossRefGoogle Scholar
  9. 9.
    X.-M. Liu, S.-Y. Fu, H.-M. Xiao, J. Solid State Chem. 178, 2798 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Li, H. Zhang, J. Wu, X. Ma, D. Yang, Cryst. Growth Des. 6, 353 (2006)Google Scholar
  11. 11.
    K. He, C.-Y. Xu, L. Zhen, W.-Z. Shao, Mater. Lett. 62, 739 (2008)CrossRefGoogle Scholar
  12. 12.
    C.-Y. Min, Y.-D. Huang, L. Liu, Mater. Lett. 61, 4756 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Zeng, K. Tang, T. Li, J. Colloid Interf. Sci. 312, 513 (2007)CrossRefGoogle Scholar
  14. 14.
    R. Yu, Z. Li, D. Wang, X. Lai, C. Xing, X. Xing, Solid State Sci. 11, 2056 (2009)CrossRefGoogle Scholar
  15. 15.
    L.P. Zhu, H.M. Xiao, S.Y. Fu, Cryst. Growth Des. 7, 177 (2007)CrossRefGoogle Scholar
  16. 16.
    C.-M. Eggleston, N. Khare, D.-M. Lovelace, J. Electron. Spectrosc. 150, 220 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies (Wiley, New York, 2001)Google Scholar
  18. 18.
    X. Chen, Z. Zhang, X.-X. Li, C. Shi, Chem. Phys. Lett. 422, 294 (2006)CrossRefGoogle Scholar
  19. 19.
    C.-P. Bean, J.-D. Livingston, J. Appl. Phys. 30, 120s (1959)CrossRefGoogle Scholar
  20. 20.
    N. Amin, S. Arajs, E. Matijevic, Phys. Status Solidi A 104, K65 (1985)Google Scholar
  21. 21.
    F. Bødker, M.-F. Hansen, C.-B. Koch, K. Lefmann, S. Mørup, Phys. ReV. B 61, 6826 (2000)CrossRefGoogle Scholar
  22. 22.
    M. Srivastava, A.-K. Ojha, S. Chaubeya, J. Singh, P.-K. Sharma, A.-C. Pandey, J. Alloys Compd. 500, 206 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Giri, S. Samanta, S. Maji et al., J. Magn. Magn. Mater. 285, 296 (2005)CrossRefGoogle Scholar
  24. 24.
    W.-S. Seo, H.-H. Jo, K. Lee, B. Kim, S.-J. Oh, T. Park, Angew. Chem. Int. Ed. 43, 1115 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Materials and Chemical EngineeringSichuan University of Science and EngineeringZigongPeople’s Republic of China
  2. 2.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations